The Group of Units in the Integers Modulon

Matt O'Reilly and Clare Callaghan fermoymatt@gmail.com, clareanncallaghan@gmail.com

Introduction

The group Z_n consists of the elements $\{0, 1, 2, \ldots, n-1\}$ with addition mod n as the operation. You can also multiply elements of Z_n , but you do not obtain a group: The element 0 does not have a multiplicative inverse, for instance. However, if you confine your attention to the units in Z_n the elements which have multiplicative inverses, you do get a group under multiplication mod n. It is denoted U_n , and is called **The group of units** in Z_n .

In Modular Arithmetic, The Integers coprime to n from the set $\{0, 1, 2, ..., n-1\}$ of n non-negative integers form a group under multiplication mod n, called The multiplicative group of integers mod n.

The set of Units in \mathbb{Z}_n

Proposition. Let U_n be the set of units in \mathbb{Z}_n , $n \ge 1$. Then U_n is a group under multiplication mod n. **Proof.** To show that multiplication mod n is a binary operation on U_n , We must show that the product of units is a unit. Suppose $a, b \in U_n$. Then a has a multiplicative inverse a^{-1} and b has a multiplicative inverse b^{-1} . Then;

> $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}(1)b = b^{-1}b = 1,$ $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a(1)a^{-1} = aa^{-1} = 1.$

Hence, $b^{-1}a^{-1}$ is the multiplicative inverse of ab, and ab is a unit. Therefore, multiplication mod n is a binary operation on U_n . We'll take it for granted that multiplication mod n is associative. The identity element for multiplication mod n is 1, and 1 is a unit in \mathbb{Z}_n . Finally, every element of U_n has a multiplicative inverse, by definition. Therefore, U_n is a group under multiplication mod n.

The Groups of Units in \mathbb{Z}_{14}

 U_{14} consists of the elements of 1_{14} which are relatively prime to 14. Thus,

 $U_{14} = \{1, 3, 5, 9, 11, 13\}.$

You multiply elements of U_{14} by multiplying as if they were integers, then reducing mod 14. For example,

 $11 \cdot 13 = 143 = 3 \mod 14$, so $11 \cdot 13 = 3$ mod 14.

Here's the multiplication table for U_{14} :



1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

Notice that the table is symmetric about the main diagonal. Multiplication mod 14 is commutative, and U_{14} is an Abelian group.

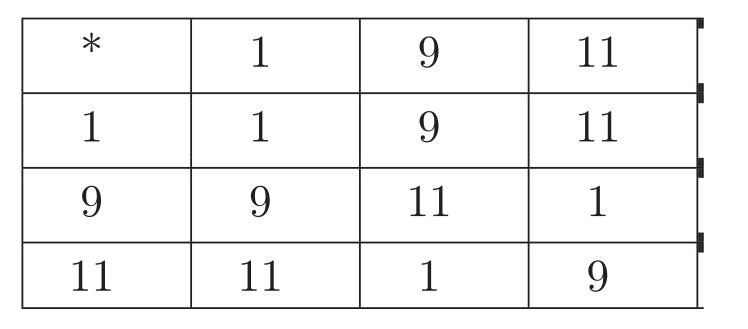
Lagranges Theorem

Lagrange's Theorem: Let G be a finite group and H a subgroup of G. Then the order of H divides the order of G. **Proof:** Suppose $g \in G$, then gH has the same number of elements as H. To see this, write k for the order of H and write h_1, h_2, \ldots, h_k for the elements of H. So the elements of gH are gh_1, gh_2, \ldots, gh_k . To prove that every element in this list is unique, suppose that ghi = ghj for $i, j \in \{1, \ldots, k\}$. Multiplying both sides of this equation on the left by g^{-1} gives hi = hj and hence i = j. So ghi are distinct for i = 1, ..., k and the coset gH has the same number of elements as H. If $g_1, g_2 \in G$, then either the cosets g_1H and g_2H are equal to each other or they are disjoint from each other. Once we have shown this we can see that each element of G appears in exactly one coset, thus the number of elements of G is $|H| + |H| + \cdots + |H|$ (k times) = k|H|. So, the order of G is an integer multiple of H.

We can use Lagranges Theorem to make it much easier to find a subgroup of the group of units in Z_{14} . We can immediately rule out any subgroups of order 4 or 5 and look either for subgroups of order 2 or 3.

 $H = \{1, 9, 11\}$

The multiplication table for H is :



Multiplication remains as the group operation. H is closed under multiplication mod 14. Associativity is inherited from the Group of Units mod 14. H contains the Identity Element and also contains an inverse for every element. Therefore H is a group (and a subgroup of U_{14}).