The Group of Units in the Integers Modulo n

fermoymatt@gmail.com , clareanncallaghan@gmail.com

Introduction

The group Z_{n} consists of the elements $\{0,1,2, \ldots, n-1\}$ with addition mod n as the operation. You can also multiply elements of Z_{n}, but you do not obtain a group: The element 0 does not have a multiplicative inverse, for instance.
However, if you confine your attention to the units in Z_{n} the elements which have multiplicative inverses, you do get a group under multiplication mod n . It is denoted U_{n}, and is called The group of units in Z_{n}

In Modular Arithmetic, The Integers coprime to n from the set $\{0,1,2, \ldots, n-1\}$ of n non-negative integers form a group under multiplication $\bmod n$, called The multiplicative group of integers modn.

The set of Units in \mathbb{Z}_{n}

Proposition. Let U_{n} be the set of units in $\mathbb{Z}_{n}, n \geq 1$. Then U_{n} is a group under multiplication mod n.
Proof. To show that multiplication $\bmod \mathrm{n}$ is a binary operation on U_{n}, We must show that the product of units is a unit.
Suppose $a, b \in U_{n}$. Then a has a multiplicative inverse a^{-1} and b has a multiplicative inverse b^{-1}. Then;

$$
\begin{aligned}
& \left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1}(1) b=b^{-1} b=1 \\
& (a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a(1) a^{-1}=a a^{-1}=1
\end{aligned}
$$

Hence, $b^{-1} a^{-1}$ is the multiplicative inverse of $a b$, and $a b$ is a unit. Therefore, multiplication mod n is a binary operation on U_{n}. We'll take it for granted that multiplication $\bmod n$ is associative. The identity element for multiplication $\bmod \mathrm{n}$ is 1 , and 1 is a unit in \mathbb{Z}_{n}.
Finally, every element of U_{n} has a multiplicative inverse, by definition. Therefore, U_{n} is a group under multiplication mod n.

The Groups of Units in \mathbb{Z}_{14}

U_{14} consists of the elements of 14 which are relatively prime to 14 . Thus,

$$
U_{14}=\{1,3,5,9,11,13\}
$$

You multiply elements of U_{14} by multiplying as if they were integers, then reducing mod 14. For example,

$$
11 \cdot 13=143=3 \quad \bmod 14, \quad \text { so } \quad 11 \cdot 13=3 \quad \bmod 14
$$

Here's the multiplication table for U_{14} :

$*$	1	3	5	9	11	13
1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

Notice that the table is symmetric about the main diagonal. Multiplication mod 14 is commutative, and U_{14} is an Abelian group.

Lagranges Theorem

Lagrange's Theorem: Let G be a finite group and H a subgroup of G. Then the order of H divides the order of G .
Proof: Suppose $g \in G$, then gH has the same number of elements as H. To see this, write k for the order of H and write $h_{1}, h_{2}, \ldots, h_{k}$ for the elements of H. So the elements of gH are $g h_{1}, g h_{2}, \ldots, g h_{k}$. To prove that every element in this list is unique, suppose that $g h i=g h j$ for $i, j \in\{1, \ldots, k\}$. Multiplying both sides of this equation on the left by g^{-1} gives $h i=h j$ and hence $\mathrm{i}=\mathrm{j}$. So $g h i$ are distinct for $\mathrm{i}=1, \ldots, k$ and the coset gH has the same number of elements as H. If $g_{1}, g_{2} \in G$, then either the cosets $g 1 H$ and $g 2 H$ are equal to each other or they are disjoint from each other. Once we have shown this we can see that each element of G appears in exactly one coset, thus the number of elements of G is $|H|+|H|+\cdots+\mid H(\mathrm{k}$ times) $=k|H|$. So, the order of G is an integer multiple of H .

$$
U_{14}=\{1,3,5,9,11,13\}
$$

We can use Lagranges Theorem to make it much easier to find a subgroup of the group of units in Z_{14}. We can immediately rule out any subgroups of order 4 or 5 and look either for subgroups of order 2 or 3 .

$$
H=\{1,9,11\}
$$

The multiplication table for H is :

$*$	1	9	11
1	1	9	11
9	9	11	1
11	11	1	9

