Cayley Graphs

Introduction

Cayley graphs are graphs that are associated to a group and a set of generators for that group.

Cayley Graphs

- Arthur Cayley was an English mathematician. Cayley made an important contribution to the algebraic theory of curves and surfaces, group theory, linear algebra, combinatorics and elliptic functions.
- Two groups are said to be isomorphic to each other if they become identical after the relabelling of their elements.
- Given a group G and a generating set X, then every element in G is assigned to a vertex in X, such that there are directed edges going from

$$
a \in G \rightarrow a x \in G
$$

given a colour assigned to X

Construction of a Cayley Graph

Once we find a group that is generated by some finite collection elements, we can construct a directed graph. Thus, every group element corresponds to an isometry.

- Here is the construction of a Cayley graph for a group G with generators $a_{1}, a_{2}, \ldots, a_{n}$ in 3 steps:
- Draw one vector for every group element.
- For every generator a_{j}, connect vertex g to $g a_{j}$ by a directed edge from g to $g a_{j}$. Label the edge with the generator.
- Repeat step 2 for every element (i.e. vertex) $g \in G$.

Example Z_{6}

Draw the Cayley graph for Z_{6}, with just one generator, namely the 60 degree rotation. However, we can also generate it with two generators: rotations by 120 and 180 .

Campanology

Campanology is the art of bell ringing. English mathematicians realised that there was a relationship between bell ringing (Plain Bob Minimus) and Cayley graphs. Since the vertices of a Cayley graph of S_{n} represent all represent all possible bell ringing permutations of n bells, finding a certain path (called a Hamiltonian Circuit) in the graph would result in a change in pattern.
For example:
Plain Bob Minimus is a permutation from bell ringing of 1234 rounds. These are the elements of S_{4}, the symmetric group of four elements.

Rubik's Cube

The essense of a $2 \times 2 \times 2$ Rubik's Cube is a Cayley graph, C_{G}.

Cayley's Mouse Trap

Card game introduced by Cayley based on permutations of 13 cards.

Cayley Digraph

Properties:

- Graph is connected.
- At most one arc goes from a vertex g to vertex h
- Each vertex g has exactly one arc of each type starting at g and one of each type ending at g
- If two different sequences of arc types staring from vertex g lead to the same vertex h then those same sequences of arc types starting from any vertex u will lead to the same vertex v

Examples of Cayley Graphs: D_{6}, D_{8}, D_{10}

References

Wikipedia
Britannica.com
web.williams.edu

Dr. Rachel Quinlan, NUIG

