Unit Groups of Modulo n

R. Corless, E. Heapes, L. Ward

NUIG

What is a Unit Group?

A unit group of integers modulo n is the set of nonnegative integers from the set $\{0,1, \ldots, n-1\}$ that are coprime to n. This is a group, under the operation of multiplication $\bmod n$.

Where have we seen modulo before?

Many of us will have seen modulo before, in maths or physics modules, but we see and think in modulo everytime we look at a one everyday object! Can you name this object? (Answer bottom right!)

$U_{n}=$ Coprimes of n

For example, $n=15 . U_{15}$ represents the elements of Z_{15} that are coprime to 15 , forming a group under the operation of multiplication mod 15 .
The identity element of U_{15} is 1 . Looking at the table we can see that each element in U_{15} has an inverse such that $x\left(x^{-1}\right)=1$. We know that multiplication is associative, and we can see that only elements of U_{15} are calculated when applying the operation to each element of the set. Therefore U_{15} is closed, associative, has inverses AND an identity element. This mean that U_{15} is a group. We can see that there is symmetry either side of the main diagonal in the table, showing that U_{15} is commutative, making U_{15} an abelian group.

	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

Fig. 1: U_{15}

Is it commutative?

Take for example, 7. Here are some examples!
$7 * 4=4 * 7=13$
$7 * 1=1 * 7=7$
$7 * 13=13 * 7=1$

$$
U_{n \in \mathrm{P}}=\{1, \ldots, n-1\}
$$

For any Z_{n}, where n is a positive integer, if n is a prime number then all numbers $\{1, \ldots, n-1\}$ are coprime to n.

For Example .. .

$U_{7}=\{1,2,3,4,5,6\}$ All the conditions for an abelian group are still met, it has an identity (1), inverses, commutative, associativity and it is closed.

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Fig. 2: U_{7}

U_{n} for all $n=2^{\mathbb{N}}$

For any Z_{n} where $0<n$ if n is of base 2 then we can easily find out how many elements are coprime to n from the equation $n / 2$.
In the table above we have chosen $n=8$, and we can see that U_{8} has $4(=(8 / 2))$ elements.
This is a special case of a unit group of integers.

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Fig. 3: $2^{\mathbb{N}}$
The Clock! When we read a clock we're reading in modulus! $11 \mathrm{am}+2 \mathrm{hrs}=1 \mathrm{pm}$, the same as $(11+2 \bmod 12=1)$

