The Group of Symmetries of the Cube (Rotations)

Alan Culligan, Enda O'Connor and James Truman

National University of Ireland Galway

Orbit-Stabilizier Theorem

$f=$ face in a cube

$\mid G \cdot f]=\left|G: \operatorname{Stab}_{G}(f)\right|$
(Note: There are 24 rotational symmetries in a cube i.e. $|G|=24$).

Proof.
Take any face on a cube. It is possible to move from that face to any face in the cube (see figure 1, right). So the orbit of any face is $\{1,2,3,4,5,6\}$ (where each number is a face in the cube). The stabilizer of all faces in cube are $\left\{i d, R_{90}, R_{180}, R_{270}\right\}$ (see figure 1 and apply appropriate axis).
$|G \cdot f|=6,\left|G: \operatorname{Stab}_{G}(f)\right|=|24: 4|=6$ $6=6$
$e=$ edge in a cube
$\{G \cdot e]=\left|G: \operatorname{Stab}_{G}(e)\right|$

Proof.

Take any edge on a cube and again it's possible to move from that edge to any edge in the cube. So the orbit of any edge is $\{1,2,3, \ldots, 12\}$ (each number is an edge in the cube. The stabilizer of any edge is $\left\{i d, R_{180}\right\}$ (where the axis of rotation goes from the centre of that edge to the centre of the edge on the face directly opposite, passing through the centre of the cube. See figure 3, right).
$|G \cdot e|=12,\left|G: \operatorname{Stab}_{G}(e)\right|=|24: 2|=12$ $12=12$

$$
\text { ABELIAN }
$$

$Z(G)=\{i d\}$
$C_{G}(x)=\{i d$, any rotation on the same axis as
$x: \forall x \in G\}$
Hence the group is not abelian.
The subgroups mentioned on the right are abelian
as rotations on the same axis commute with each
other.

IsOMORPHIC TO S_{4}

- Identity $=1$.

Permutations in $S_{4}:(1)(2)(3)(4), R_{360}$ through any axis.

- Edge Midpoint Rotation $=6$ Permutation in $S_{4}:(12)(13)(14)(23)(24)(34)$, (see figure 3).
- Diagonal Rotation $=8$

Permutation in S_{4} :
(123), (124), (134), (132), (142)(143), (234),
(243), (see figure 2).

- Face Midpoint Rotation (horizontal axis) $=6$ Permutation in S_{4}
(1234), (1243), (1324), (1342), (1423), (1432) (see figure 1)
- Face Midpoint Rotation (vertical axis) $=3$ Permutation in $S_{4}:(12)(34),(13)(24),(14)(23)$, (see figure 1).

SUBGROUPS

- Stabilizer of each face forms a subgroup of order 4 and stabilizer of each edge forms a subgroup of order 2 .
- For axis shown in figure 1, all rotations through the same axis form a subgroup of order 4.
- For axis shown in figure 2, all rotations through the same axis form a subgroup of order 3.
- For axis shown in figure 3, all rotations through the same axis form a subgroup of order 2.
Order of the subgroups are 2,3 and 4 and are factors of $|G|=24$.Verifying Lagrange's theorem.

References

[^0]
[^0]: [1] Rotation Diagrams.
 http://garsia.math.yorku.cal
 http://garsia.math.yorku.cab
 zabrocki/math4160w03/cubesyms

