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Outline
The aspects of the cubes symmetries we will
investigate are:
•Verifying the rotations of a cube form a group.
•Displaying how this group complies with the
orbit stabilizer theorem.
•Showing the symmetry group of a cube is
isomorphic to S4.
•Finding subgroups and proving for Lagrange’s
theorem.

Rotations of a cube form a
group.

•Closure.
Let, G be the group of symmetries in a cube and
let a, b ∈ G. Need to show a ∗ b ∈ G. We
can prove this by showing x ∗ (a ∗ b) = (x ∗
a) ∗ b. Clearly any 3 rotations applied in the
same order, on two different occasions, give the
same result. Therefore the rotations of a cube
obeys associativity. If a ∈ G then applying a
to an unmarked cube gives a seemingly identical
looking cube. If b ∈ G and applied to this result,
we still appear to have an identical looking cube.
Thus a ∗ b ∈ G.
• Identity.
Does an id element exist within the rotations of
cube such that: id ∗ x = x ∗ id, x = x,∀x ∈ G
The identity is any rotation that leaves the cube
completely unchanged. This is R360 through any
axis.
• Inverse.
Each rotation is its own inverse. For example,
take a rotation x ∈ G. If you apply the rotation
x and then apply the same rotation in the
opposite direction, you end up where you
originally started. Thus x−1 ∈ G.

Orbit-Stabilizier Theorem
f = face in a cube
|G · f ] = |G : StabG(f )|
(Note: There are 24 rotational symmetries in a
cube i.e. |G| = 24).

Proof.
Take any face on a cube. It is possible to
move from that face to any face in the cube
(see figure 1, right). So the orbit of any face is
{1, 2, 3, 4, 5, 6} (where each number is a face in
the cube). The stabilizer of all faces in cube are
{id, R90, R180, R270} (see figure 1 and apply
appropriate axis).
|G · f | = 6, |G : StabG(f )| = |24 : 4| = 6
6 = 6

e= edge in a cube
|G · e] = |G : StabG(e)|

Proof.
Take any edge on a cube and again it’s possible
to move from that edge to any edge in the cube.
So the orbit of any edge is {1, 2, 3, ..., 12} (each
number is an edge in the cube. The stabilizer of
any edge is {id, R180} (where the axis of rotation
goes from the centre of that edge to the centre
of the edge on the face directly opposite, pass-
ing through the centre of the cube. See figure 3,
right).
|G · e| = 12, |G : StabG(e)| = |24 : 2| = 12
12 = 12

Rotations1

Figure 1:Face Midpoint Rotation.

Figure 2:Diagonal Rotation.

Figure 3:Edge Midpoint Rotation.

Abelian
Z(G) = {id}
CG(x) = {id, any rotation on the same axis as
x : ∀x ∈ G}
Hence the group is not abelian.
The subgroups mentioned on the right are abelian
as rotations on the same axis commute with each
other.

Isomorphic to S4

• Identity = 1.
Permutations in S4: (1)(2)(3)(4), R360 through
any axis.
•Edge Midpoint Rotation = 6
Permutation in S4:(12)(13)(14)(23)(24)(34),
(see figure 3).
•Diagonal Rotation = 8
Permutation in S4:
(123), (124), (134), (132), (142)(143), (234),
(243), (see figure 2).
•Face Midpoint Rotation (horizontal axis) = 6
Permutation in S4:
(1234), (1243), (1324), (1342), (1423), (1432),
(see figure 1).
•Face Midpoint Rotation (vertical axis) = 3
Permutation in S4: (12)(34), (13)(24), (14)(23),
(see figure 1).

Subgroups
•Stabilizer of each face forms a subgroup of
order 4 and stabilizer of each edge forms a
subgroup of order 2.
•For axis shown in figure 1, all rotations
through the same axis form a subgroup of
order 4.
•For axis shown in figure 2, all rotations
through the same axis form a subgroup of
order 3.
•For axis shown in figure 3, all rotations
through the same axis form a subgroup of
order 2.

Order of the subgroups are 2,3 and 4 and are
factors of |G| = 24.Verifying Lagrange’s theorem.
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