Introduction

A permutation can be defined as a rearrangement of an ordered list S in to a one-to-one correspondence with S itself. The permutations of a set X = 1, 2, ..., n form a group under composition. This group is called the symmetric group S_n of degree n. A permutation is considered "even" if it can be written as a product of an even number of transpositions, it has sign +1. Alternatively, a permutation is "odd" if it can be written as a product of an odd number of permutations, it has sign -1.

Objectives

The objective of this project is to teach the reader more about even and odd permutations while simultaneously proving the following three lemmas:

- Every permutation of a set 1,...n where n>2 can be written as a product of transpositions.
- Every permutation is either even or odd but never both.
- The group of even permutations form a subgroup of S_n however the odd permutations do not.

Recursion Tree for Permutations of String "ABC"

Even and Odd Permutations

Ben O'Connell, Mark Dervan and Naoise O'Callaghan

MA3343 Groups Project

Writing permutations as a product of disjoint cycles.

Theorem: Every permutation of a finite set of n>1 elements can be written as a product of disjoint cycles.

Proof:Let α be a permutation of A = 1, 2, ...n. Pick any element, say a_1 . This gets sent to a_2 as follows $\alpha(a_1) = a_2$, a_2 then gets sent to a_3 as follows $\alpha^2(a_1)$. As A is finite the sequence a_1 , $\alpha(a_1), \alpha^2(a_1), \dots$ must be finite and hence there must exist some i<j for which $\alpha^{i}(a_{1}) = \alpha^{j}(a_{2})$ and m = j-i such that $a_1 = \alpha^m(a_1)$. We can write α = (a_1, a_2, \dots, a_m) . If we have exhausted all elements of A then we're done. If not we pick some b_1 from the elements left and repeat the same process to get a cycle $(b_1, b_2, ..., b_k)$. We note that the two cycles are disjoint. If they had elements in common then for some i and j we would have $\alpha(a_1) = \alpha(b_1)$, that is $b_1 = \alpha^{i-j}(a_1)$. This would imply b_1 is an element of the cycle (a_1, a_2, \dots, a_m) , which contradicts the way b_1 was chosen.We repeat this process until all elements of A are exhausted

Writing permutations as a product of transpositions

Each cycle in S_n with n>1 can easily be shown to be written as a product of transpositions. The cycle (a_1, a_2, \dots, a_p) can be written as (a_1, a_p) , (a_1, a_p) a_{p-1}), ..., (a_1, a_3) , (a_1, a_2) .

We have shown that every permutation can be written as a product of disjoint cycles and also that any cycle in S_n with n>1 can be written as a product of permutations. It follows trivially that each permutation can be written as a product of transpositions.

Prelude: The identity permutation on S_n , that is the permutation that sends every element to itself, is even. **Theorem:** No permutation is both even and odd **Proof:** Lets suppose α is both even and odd. So $\alpha = \beta_1 \beta_2 \dots \beta_m = \lambda_1 \lambda_2 \dots \lambda_n$ where m is even and m is odd. Since every transposition is its own inverse, this would imply that id=

 $\beta_1\beta_2...\beta_m\lambda_n\lambda_{n-1}...\lambda_1$. Since n+m is odd, this contradicts the fact that α is both even and odd.

id.

Closure: Multiplying two permutations, f and g, yields another permutation.

10	11
13	14
16	17

Even and odd permutations

Representing permutations as groups

As we stated earlier the permutations of a set X=[1, 2, . . , n] form a group under composition. This group is called the symmetric group S_n of degree n.

Identity: Let s be a permutation of S_n clearly s o id = id \circ s = s, S_n contains the identity element,

- Inverse: The inverse s^{-1} of s is a permutation of S_n by definition and $s \circ s^{-1} = s^{-1} \circ s$.
- Associative: Composition of functions is associative.

Group of even permutations as a subgroup of S_n

Clearly the set of even permutations, A_n , is a subset of S_n , the set of all permutations. We now show A_n is a group itself under the operation of composition. Identity: Let s be a permutation of S_n clearly s \circ id = id \circ s = s, S_n contains the identity element, id. Here s is an even permutation. Inverse: The inverse s^{-1} of s is a permutation of S_n by definition and $s \circ s^{-1} = s^{-1} \circ s$. Associative: Composition of functions is associative. Closure: Multiplying two permutations, f and g, yields another permutation.

Group of odd permutations as a subgroup of S_n

Although the set of odd permutations is a subset of the set of all permutations it fails to be a subgroup of the group S_n as it does not contain the identity element. The identity element, id, is an even permutation and as we have previously shown a permutation cannot be both even and odd.

Real Life Applications

• Although a trivial example, we see permutation groups in the rubiks cube. We can rotate the 6 faces of the cube so we can define 6 basic operations or permutations which rearrange the ordered list in a certain way. • Combination locks should technically be called "Permutation Locks" as they use permutations and not combinations.