Even and Odd Permutations

Ben O'Connell, Mark Dervan and Naoise O'Callaghan

MA3343 Groups Project

Introduction

A permutation can be defined as a rearrangement of an ordered list S in to a one-to-one correspondence with S itself The permutations of a set $\mathrm{X}=1,2, \ldots, \mathrm{n}$ form a group under composition. This group is called the symmetric group S_{n} of degree n.
A permutation is considered "even" if it can be written as a product of an even number of transpositions, it has sign +1 .
Alternatively, a permutation is "odd" if it can be written as a product of an odd number of permutations, it has sign -1 .

Objectives

The objective of this project is to teach the reader more about even and odd permutations while simultaneously proving the following three lemmas:

- Every permutation of a set $1, \ldots \mathrm{n}$ where $\mathrm{n}>2$ can be written as a product of transpositions.
- Every permutation is either even or odd but never both.
- The group of even permutations form a subgroup of S_{n} however the odd permutations do not.

Recursion Tree for Permutations of String "ABC

Writing permutations as a product of disjoint cycles.
Theorem: Every permutation of a finite set of $n>1$ elements can be written as a product of disjoint cycles.
Proof:Let α be a permutation of $A=1,2, \ldots n$.
Pick any element, say a_{1}. This gets sent to a_{2} as follows $\alpha\left(a_{1}\right)=a_{2}, a_{2}$ then gets sent to a_{3} as follows $\alpha^{2}\left(a_{1}\right)$. As A is finite the sequence a_{1}, $\alpha\left(a_{1}\right), \alpha^{2}\left(a_{1}\right), \ldots$ must be finite and hence there must exist some $i<j$ for which $\alpha^{i}\left(a_{1}\right)=\alpha^{j}\left(a_{2}\right)$ and $m=j$-i such that $a_{1}=\alpha^{m}\left(a_{1}\right)$. We can write α $=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. If we have exhausted all elements of A then we're done. If not we pick some b_{1} from the elements left and repeat the same process to get a cycle ($b_{1}, b_{2}, \ldots, b_{k}$). We note that the two cycles are disjoint. If they had elements in common then for some i and j we would have $\alpha\left(a_{1}\right)=\alpha\left(b_{1}\right)$, that is $b_{1}=\alpha^{i-j}\left(a_{1}\right)$. This would imply b_{1} is an element of the cycle ($a_{1}, a_{2}, \ldots, a_{m}$), which contradicts the way b_{1} was chosen. We repeat this process until all elements of A are exhausted

Writing permutations as a product of transpositions
Each cycle in S_{n} with $n>1$ can easily be shown to be written as a product of transpositions. The cycle $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ can be written as $\left(a_{1}, a_{p}\right)$, $\left(a_{1}\right.$, $\left.a_{p-1}\right), \ldots,\left(a_{1}, a_{3}\right),\left(a_{1}, a_{2}\right)$.
We have shown that every permutation can be written as a product of disjoint cycles and also that any cycle in S_{n} with $n>1$ can be written as a product of permutations. It follows trivially that each permutation can be written as a product of transpositions.

Even and odd permutations

Prelude: The identity permutation on S_{n}, that is the permutation that sends every element to itself, is even.
Theorem: No permutation is both even and odd Proof: Lets suppose α is both even and odd. So $\alpha=\beta_{1} \beta_{2} \ldots \beta_{m}=\lambda_{1} \lambda_{2} \ldots \lambda_{n}$ where m is even and m is odd. Since every transposition is its own inverse, this would imply that id=
$\beta_{1} \beta_{2} \ldots \beta_{m} \lambda_{n} \lambda_{n-1} \ldots \lambda_{1}$. Since $n+m$ is odd, this contradicts the fact that α is both even and odd.

Representing permutations as groups

As we stated earlier the permutations of a set $X=[1,2, \ldots, n]$ form a group under composition. This group is called the symmetric group S_{n} of degree n.
Identity: Let s be a permutation of S_{n} clearly s o $\mathrm{id}=\mathrm{id} \circ \mathrm{s}=\mathrm{s}, \mathrm{S}_{\mathrm{n}}$ contains the identity element, id.
Inverse: The inverse s^{-1} of s is a permutation of S_{n} by definition and $\mathrm{s} \circ \mathrm{s}^{-1}=\mathrm{s}^{-1} \circ \mathrm{~s}$.
Associative: Composition of functions is associative.
Closure: Multiplying two permutations, f and g yields another permutation.

Group of even permutations as a subgroup of S_{n}
Clearly the set of even permutations, A_{n}, is a subset of S_{n}, the set of all permutations. We now show A_{n} is a group itself under the operation of composition. Identity: Let s be a permutation of S_{n} clearly s o $\mathrm{id}=\mathrm{id} \circ \mathrm{s}=\mathrm{s}, \mathrm{S}_{\mathrm{n}}$ contains the identity element, id. Here s is an even permutation.
Inverse: The inverse s^{-1} of s is a permutation of s_{n} by definition and $s \circ s^{-1}=s^{-1} \circ s$. Associative: Composition of functions is associative.
Closure: Multiplying two permutations, f and g, yields another permutation.

Group of odd permutations as a

 subgroup of S_{n}Although the set of odd permutations is a subset of the set of all permutations it fails to be a subgroup of the group S_{n} as it does not contain the identity element. The identity element, id, is an even permutation and as we have previously shown a permutation cannot be both even and odd.

Real Life Applications

- Although a trivial example, we see permutation groups in the rubiks cube. We can rotate the 6 faces of the cube so we can define 6 basic operations or permutations which
rearrange the ordered list in a certain way
- Combination locks should technically be called "Permutation Locks" as they use permutations and not combinations.

