Generators of Cyclic Groups

Emily McDonagh:Lisa Murphyand Sarah Egan $17426532,17442254,17371311$

Definitions

A group G is said to be 'cyclic' if it can be generated by at least one element in the group. A cyclic group is denoted by Cn .
If a group is cyclic the element or elements that can
generate the whole group are referred to as generators of the group This generator is denoted by the brackets <>

Explanation: Let G be a group under the binary operation of addition.
Now, let $\mathrm{x} \epsilon G$.
The group generated by $<\mathrm{x}>$ is the smallest subgroup of G containing x. i.e. $G=\langle x\rangle$

Notes
All cyclic groups are abelian

- There are two types of cyclic groups : Infinite and finite.
- The trivial group consisting of the identity element denoted (e) is arbitrarily cyclic
- It is possible for non-cyclic groups to contain cyclic subgroups

Infinite Cyclic Groups

Example:

$(\mathbb{Z},+)$ Integers under the binary operation of addition. As the binary operation is addition the generator will take the form of

$$
\langle a\rangle=n a \mid n \in \mathbb{Z}
$$

This is the only example of an infinite cyclic group.
t has only 2 generators

$$
<1\rangle \text { and }<-1\rangle
$$

For any element $\langle\mathrm{x}\rangle$ to be a generator of a group it must be able to generate:

1. the identity element. (0)
2. the inverse of itself
3. every multiple of the element

Finite Cyclic Groups

Example

$(\mathbb{Z} \mid n \mathbb{Z},+)$ Integers under addition modulo n
This is a finite group of n elements where $\mathrm{n} \epsilon \mathbb{N}$
Elements of $\mathbb{Z}_{n}=(0,1,2, \ldots, n-1)$
Applying the group operation to these elements will generate:

$$
\begin{aligned}
&(. .-2,-1,0,1,2, \ldots, n-1, n, n+1, n+2 . .) \\
& n \equiv 0 \bmod (n) \\
& n+1 \equiv 1 \bmod (n) \\
& n+2 \equiv 2 \bmod (n) \\
& \cdots \cdots \\
&-2 \equiv n-2 \bmod (n) \\
&-1 \equiv n-1 \bmod (n)
\end{aligned}
$$

The group generated by $<1\rangle$ cycles through the numbers ($0-\mathrm{n}-1$) repeatedly herefore it is referred to as a 'cyclic' group. Notes

- Depending on the value of n, generators other than $<1>$ will be present.

Examples

- C_{6} (Integers under addition modulo 6)

The elements 1 and 5 generate C_{6}, since:

$$
\begin{array}{cc}
1=1 & 5=5 \\
1+1=2 & 5+5=4 \bmod 6 \\
1+1+1=3 & 5+5+5=3 \bmod 6 \\
1+1+1+1=4 & 5+5+5+5=2 \bmod 6 \\
1+1+1+1+1=5 & 5+5+5+5+5=1 \bmod 6 \\
1+1+1+1+1+1=0 & 5+5+5+5+5+5=0 \bmod 6
\end{array}
$$

You can see that the two elements $<1\rangle$ and $<5\rangle$ each individually generate all elements of C_{6}. These are the only two generators

- C_{8} (Integers under addition modulo 8

The cyclic group C_{8} has 4 generators. These are

$$
<1>,<3>,<5>\text { and }<7>
$$

Each of these elements under repeated addition upon themselves will generate to whole group

$$
C_{8}=(0,1,2,3,4,5,6,7)
$$

Examples ctd

Observe the cyclic structure of C_{8} below:

Fig. 2: Infinite number-line

Non- Example

D5 is dihedral group that is a non-example
Dihedral groups are groups of symmetries of a regular polygon. Such symmetries can be seen in a regular pentagon.
D5 is not abelian and therefore is not cyclic as all cyclic groups are abelian.

Fig. 3: D5- a non example of a cyclic group
Number of Generators of a group of Order n

All the generators of a finite group C_{n} are ones that are relatively prime to n, i.e have a gdc of 1 with n .
General Rule: Two generators of any cyclic group of order n will always be:

$$
\langle 1\rangle \text { and }\langle n-1\rangle
$$

Looking at C 8 we have previosuly stated that the gererators are: $3,5,7,1$. The othe lements $(0,2,4,6)$ are not co-prime to $n=8$ therefore will not generate the entir group. i.e

$$
\begin{aligned}
<0>=(0) \\
<2>=(2,4,6,0) \\
<4>=(4,0) \\
<6>=(6,4,2)
\end{aligned}
$$

