Axioms of a Group

Rubik's cubes satisfy all the conditions of a group:

- Contains an Identity Element
- Inverse Element
- Closure
- Associativity

1. Identity Element

An identity element ξ for a binary operation $*$ is one that has no effect on any element when combined with that element using *, it is "neutral".

Labelling M as a random combination of moves and e as the "empty" identity move, $M^{*} \mathrm{e}=M$. Thus e (not moving) is the identity element

$$
\# \Rightarrow
$$

2. Inverse Element

Let $X, Y \in G$. An element X is an inverse element of Y if $\mathrm{X} * \mathrm{Y}=\mathrm{Y} * \mathrm{X}=\xi$. Where ξ is the neutral element

Let M be a move and the inverse be M'. Doing these together returns you to your starting point. This is like the "empty move" e - the neutral element.

$$
M^{*} M^{\prime}=\mathrm{e}(\xi)
$$

$$
H \Rightarrow H \Rightarrow H
$$

Notation

- We denote the six faces into Front (F), Back(B), Left(L), Right(R), Up(U) Down(D)
- $\mathrm{F}=90$ degree rotation clockwise of the front face
- FF $=180$ degree rotation clockwise of the front face
- $\mathrm{FU}=90$ degree rotation clockwise of the front face followed by 90 degree rotation clockwise of the up face.
- $\mathrm{F}^{\prime}=90$ degree rotation counter-clockwise of the front face
- $\mathrm{FF}^{\prime}=90$ degree rotation clockwise of the front face followed by a 90 degree rotation counter-clockwise of the front face, which results in what you originally had
- $\therefore F^{\prime}$ is the inverse of F

Rubik's Cube's Applications to Group Theory

by Sarah Gibbons, Eoin McAuley \& Cian Tighe

Subgroups?

- The number of possible permutations of the squares on a Rubik's cube is given by $\frac{8!*\left(3^{8}\right) * 12 * 2^{12}}{3 * 2 * 2}$ which is roughly equal to $4.3252 * 10^{19}$
- Knowing Lagrange's Theorem states that if we let G be a finite group and let H be a subgroup of G. Then the order of H divides the order of G
- Therefore any subgroup of the Rubik's Group has order of a divisor of $\frac{8!*\left(3^{8}\right) * 12 * 2^{12}}{3 * 2 * 2}$
- Eg - the group generated by U and $R R$ has size $\left(2^{6} * 3^{2} * 5^{2}\right)$. Which divides evenly into the order of G, making it a subgroup of G

Let M_{1} and M_{2} be any two moves of a Rubik's Cube, $\therefore M_{1}, M_{2} \in G$. In order for G to be closed under the operation *, $M_{1} * M_{2} \in G$.
This is true as no matter which two moves we combine, it will return an ac ceptable move, meaning it's part of the group. i.e. $M_{1} * M_{2} \in G$.
For example, if M_{1}

$$
\# \Rightarrow
$$

The centre is the group of elements that commute with the whole group. from the identity (obviously) and the "Superflip" (s). [Pictured Above] - The superflip or is a Rubik's Cube configuration in which all 20 of the mov able subcubes ("cubies") are in the correct permutation, and the eight cor ners are correctly oriented, but all twelve of the edges are "flipped". The moves, commutes with every possile move, making the centre equal to $\{e, s\}$.

This move would clearly be in the group.
4. Associativity

Let M_{1}, M_{2} and M_{3} be any three moves,
$\therefore M_{1}, M_{2} M_{3} \in G$.
For G to be associative
$\left(M_{1} * M_{2}\right) * M_{3}=M_{1} *\left(M_{2} * M_{3}\right)$.
This is clearly true; if we do M_{1} and M_{2} first, then M_{3}, you'll end up with the same as if you did M_{1} first then M_{2} and M_{3}.
Using M_{1} and M_{2} before and M_{3} to be:

```
###
```

Doing $\left(M_{1} * M_{2}\right) * M_{3}$ will result in

$$
\square \Rightarrow \square \Rightarrow
$$

Then $M_{1} *\left(M_{2} * M_{3}\right)$ will result in

$$
\# \Rightarrow \# \Rightarrow
$$

