Introduction

The crystallographic restriction theorem in its basic form was based on the ob-
servation that the rotational symmetries of a crystal are usually limited to 2-fold,
3-fold, 4-fold, and 6-fold. Although objects themselves may appear to have 5-fold,
/-fold, 8-fold, or higher-fold rotation axes, these are not possible in crystals. Crys-
tals can only show 2-fold, 3-fold, 4-fold or 6-fold rotation axes. The reason is that
the external shape of a crystal is based on a geometric arrangement of atoms
(vertices). In fact, if we try to combine objects with 5-fold and 8-fold apparent
symmetry, we cannot combine them in such a way that they completely fill space,
as illustrated below:

Explanation

A shape is said to have rotational symmetry if it can be mapped onto itself through
rotation about a central point by some angle less than 27. If the rotation angle
IS 7r/n, then the shape is said to have n-fold symmetry. All regular polygons have
rotational symmetry (when working in the plane). In fact, an n-sided regular poly-
gon has n-fold symmetry. For example, a regular pentagon has 5-fold rotational
symmetry and can be mapped upon itself through rotation by an angle of 27/n.
However, when working in three-dimensional space as with crystals, there are a
limited number of ways in which to rotate an object about a point mapping each
of its vertices onto another. These rotations can come in the form of:

e 1 —fold rotation (rotation through 360 degrees)

e 2 - fold rotation (rotation through 180 degrees)

¢ 3 - fold rotation (rotation through 120 degrees)

e 4- fold rotation (rotation through 90 degrees)

e 6- fold rotation (rotation through 60 degrees)

In the case of crystals the only above rotation axes can occur!!

Lattice symmetries

Rotational symmetries of building blocks (polygons)
must be consistent with translational symmetry

crystallographic restriction theorem:
lattice can have only 2, 3, 4, and 6-
fold rotational symmetries
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Lattice Space

Comparison

To fully understand this concept, we need to know what the term lattice means. In two
dimensions, a lattice is a regular distribution of points across the plane. In three-dimensional
space a lattice is a regular repeated arrangement of points. In simple terms, each point must
be indistinguishable and have identical surroundings. The points must be distributed in such
a fashion so that they can successfully be mapped onto each other by rotating about a point.
A unit cell is an object that will fill all space when translated by the lattice translation vectors.
A basis is then an object assigned to each lattice point, for example an atom or molecule.
In the figure below which is set in the Euclidean plane, we can see two example of unit cells
and two invalid examples. In the top two diagrams, we see there is a square and hexagon
shaded in. These are considered unit cells on these lattice spaces as for the top right
example (4-fold (2-fold)), you can attach more squares to each side of the square infinitely
along the lattice space. During this process all space will be filled (shaded). This will also
work for the hexagonal (6-fold (3-fold)) shape in the top left diagram. However, when you try
this with a pentagon or octagon, you will find you are unable to fill all space. Translating this
into three dimensional space, in order to form a crystal, the arrangement of vertices must
allow us to completely fill space, leaving behind no gaps, by repeating the arrangement.
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Fig. 3: Compatible: 6-fold (3-fold), 4-fold (2-fold)
Incompatible: 8-fold, 5-fold

Consider an 8-fold rotation (as in the bottom left of Fig. 3), and the displacement vectors
between adjacent points of the polygon. If a displacement exists between any two lattice
points, then that same displacement is repeated everywhere in the lattice. So collect all
the edge displacements to begin at a single lattice point. The edge vectors become radial
vectors, and their 8-fold symmetry implies a regular octagon of lattice points around the
collection point. But this is impossible, because the new octagon is about 80% as large as
the original. The significance of the shrinking is that it is unlimited. The same construction
can be repeated with the new octagon, and again and again until the distance between
lattice points is as small as we like; thus no discrete lattice can have 8-fold symmetry. The
same argument applies to any k-fold rotation, for k greater than 6.

In Fig. 4 we see a regular dodecahedron which is an object comprised of 12
pentagonal faces, 3 meeting at each vertex. Although this object has 5-fold rota-
tional axes, we cannot infinitely arrange regular dodecahedrons together without
leaving pockets of space in between.

Fig. 4: Regular Dodecahedron

Importance of Crystallography

Computers and smart phones have become essential in our daily lives. Crys-
tallography determines the functionality of many of their components. A few
examples are screen backlights and batteries. Almost all pharmaceuticals are
molecularly crystallographic substances. Understanding crystallography is im-
portant for the production of safe pharmaceuticals. Crytallography also helps in
optimising fertilizers for maximising crop yield. Lastly, it can help in designing
ideal membranes for desalination plants to treat drinking water.

Examples of Crystals

Here are some example of crystals. It is possible to arrange each one infinitely
with itself so as to completely fill space, leaving no pockets of space in between.




