Groups Poster Project

Introduction

Lattice Space

To fully understand this concept, we need to know what the term lattice means. In two dimensions, a lattice is a regular distribution of points across the plane. In three-dimensional space a lattice is a regular repeated arrangement of points. In simple terms, each point must be indistinguishable and have identical surroundings. The points must be distributed in such a fashion so that they can successfully be mapped onto each other by rotating about a point. A unit cell is an object that will fill all space when translated by the lattice translation vectors. A basis is then an object assigned to each lattice point, for example an atom or molecule. In the figure below which is set in the Euclidean plane, we can see two example of unit cells and two invalid examples. In the top two diagrams, we see there is a square and hexagon shaded in. These are considered unit cells on these lattice spaces as for the top right example (4-fold (2 -fold)), you can attach more squares to each side of the square infinitely along the lattice space. During this process all space will be filled (shaded). This will also work for the hexagonal (6 -fold (3 -fold)) shape in the top left diagram. However, when you try this with a pentagon or octagon, you will find you are unable to fill all space. Translating this into three dimensional space, in order to form a crystal, the arrangement of vertices must allow us to completely fill space, leaving behind no gaps, by repeating the arrangement.

rotation about a central point by some angle less than 2π. If the rotation angle rotation about a central point by some angle less than 2π. If the rotation angle is π / n, then the shape is said to have n-fold symmetry. All regular polygons have olar shar symmetry and can be mapped upon itself through rotation by an angle of $2 \pi / n$, However, when working in three dimensional space as with crystals, there are a limited number of ways in which to rotate an object about a point mapping each of it vetices onto another. The retations can in the form of

- 1 -fold rotation (rotation through 360 degrees)
- 2 - fold rotation (rotation through 180 degrees)
- 3 - fold rotation (rotation through 120 degrees)
- 4- fold rotation (rotation through 90 degrees)
- 6 - fold rotation (rotation through 60 degrees)

In the case of crystals the only above rotation axes can occur!!
The crystallographic restriction theorem in its basic form was based on the ob servation that the rotational symmetries of a crystal are usually limited to 2 -fold 3 -fold, 4 -fold, and 6 -fold. Although objects themselves may appear to have 5 -fold, 7 -fold, 8 -fold, or higher-fold rotation axes, these are not possible in crystals. Crys tals can only show 2 -fold, 3 -fold, 4 -fold or 6 -fold rotation axes. The reason is that the external shape of a crystal is based on a geometric arrangement of atoms
(vertices). In fact, if we try to combine objects with 5 -fold and 8 -fold apparent symmetry, we cannot combine them in such a way that they completely fill space, as illustrated below:

Explanation

Lattice symmetries

Rotational symmetries of building blocks (polygons) must be consistent with translational symmetry crystallographic restriction theorem: lattice can have only $2,3,4$, and 6 fold rotational symmetries

