Yi Liaw
19239969
MA3343: Groups (Poster Project)

7. The number of generators of a cyclic group

We will first prove the general fact that all elements of order k in a cyclic group of order n, where k and n are relatively prime, generate the group. This implies that if n is prime, the $n-1$ elements other than the identity generate the group.

First, notice that elements of the form x^{p} where p and n are not relatively prime cannot generate the group.

To see this, let

$$
p=a k, n=b k
$$

where $a<b$ and $1<k \in \mathbf{Z}$. Then the largest possible order of x^{p} would be b, since

$$
\mathrm{x}^{\mathrm{pb}}=\mathrm{x}^{\mathrm{bak}}=\left(\mathrm{x}^{\mathrm{bk}}\right)^{\mathrm{a}}=\left(\mathrm{x}^{\mathrm{n}}\right)^{\mathrm{a}}=1^{\mathrm{a}}=1 .
$$

However, $b<n=b k$, so the order of $\mathrm{x}^{\mathrm{p}}<\mathrm{n}$, so x^{p} cannot be a generator.
Now notice that an element of the form x^{q} where q and n are relatively prime has order n.
To see this, note that we only have to show that x^{q} has order at least n, since it clearly has order at most n. Assume x^{q} is of order j, where $j<n$. Then

$$
\left(x^{q}\right)^{j}=x^{q j} \text { implying that } q j=\ln \text { for some } l \in \mathbf{Z} .
$$

However, since n doesn't divide q, n must divide j, which is impossible since $j<n$.
Therefore, x^{q} has order n, and its n powers are distinct, so x^{q} must generate the group.
Now we can easily see that in a cyclic group of order $5, x, x^{2}, x^{3}$, and x^{4} generate this group.
In a cyclic group of order $6, x$ and x^{5} generate the group.
In a cyclic group of order $8, x, x^{3}, x^{5}$, and x^{7} generate the group.
In a cyclic group of order $10, x, x^{3}, x^{7}$, and x^{9} generate the group.

Non Abelian Group With Arelian Suegruup

