Yi Liaw

19239969

MA3343: Groups (Poster Project)

7. The number of generators of a cyclic group

We will first prove the general fact that all elements of order k in a cyclic group of order n, where k and n are relatively prime, generate the group. This implies that if n is prime, the n-1 elements other than the identity generate the group.

First, notice that elements of the form x^p where *p* and *n* are not relatively prime cannot generate the group.

To see this, let

$$p = ak, n = bk$$

where a < b and $1 < k \in \mathbb{Z}$. Then the largest possible order of x^p would be *b*, since

$$x^{pb} = x^{bak} = (x^{bk})^a = (x^n)^a = 1^a = 1.$$

However, $b \le n = bk$, so the order of $x^p \le n$, so x^p cannot be a generator.

Now notice that an element of the form x^q where q and n are relatively prime has order n.

To see this, note that we only have to show that x^q has order at least *n*, since it clearly has order at most *n*. Assume x^q is of order *j*, where j < n. Then

$$(x^q)^j = x^{qj}$$
 implying that $qj = ln$ for some $l \in \mathbb{Z}$.

However, since *n* doesn't divide *q*, *n* must divide *j*, which is impossible since j < n.

Therefore, x^q has order *n*, and its *n* powers are distinct, so x^q must generate the group.

Now we can easily see that in a cyclic group of order 5, x, x^2 , x^3 , and x^4 generate this group.

In a cyclic group of order 6, x and x^5 generate the group.

In a cyclic group of order 8, x, x^3 , x^5 , and x^7 generate the group.

In a cyclic group of order 10, x, x^3 , x^7 , and x^9 generate the group.

