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Introduction

The Italian mathematician Joseph Louis Lagrange created a
very famous theorem in groups and applied mathematics
known as Lagrange’s Theorem. In this poster you will learn
the history and evolution of this theorem from Lagrange’s
original version to the modern adaptation of the theorem. We
will break this topic into different sections featuring details on
Lagrange’s life, his contributions to mathematics and the
differences between his original theorem and the one we see
today.

Who was Joseph Lagrange?

Joseph Luis Lagrange (Giuseppe Luigi Lagrangia) was born
in Turin, Italy on the 25th of January 1736 and lived until
1813. He is well known because of his contributions in many
fields of mathematics such as number theory, number
analysis and applied mathematics. An example of one of his
contributions is Lagrangian mechanics, which re-formulated
Newtonian mechanics to simplify formulae and calculations.

Lagrange’s Theorem

Trying to find the subgroups of some finite group G could
prove very difficult. Lagrange’s Theorem makes finding those
subgroups much easier.

Theorem

If G is a finite group and H is a subgroup of G, then |H|, the
order of H divides |G|, the order of G.

This proves very helpful in figuring out which subgroups a
group possesses provided the group is finite.

Solving the Quintic

Solving linear, quadratic, cubic and quartic equations can be
done by finding and factorizing their radicals, no matter
whether the roots are rational or irrational, real or complex.
There should always be a formula that provides the desired
solutions. However, there is no algebraic expression in terms
of roots for the solutions of general quintic equations. This
statement is known as the Abel–Ruffini theorem([1]), which
was first asserted in 1799 and completely proved in 1824.
This result also holds for equations of higher degrees. An
example of a quintic whose roots cannot be expressed in
terms of radicals is

x5 − x + 1 = 0.

This particular quintic is in Bring–Jerrard normal form.
Some quintics may be solved in terms of radicals. However,
the solution is generally too complex to be used in practice.
Instead, numerical approximations are calculated using a
root-finding algorithm for polynomials, for example, Newton’s
Method.

What did Lagrange do?

His concern was the question of finding an algebraic formula
for the roots of the general 5th degree polynomial and more
generally for the nth (n > 4), since the quadratic, cubic and
quartic formulae were already known. He observed that the
solutions to quartic and cubic equations involved solving
supplementary polynomials of lower degree. These
polynomials are also known as ”resolvent”([2]) polynomials.
For this example we can write the roots as:
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where x1, x2, x3, x4 are roots of the original polynomial. He
also observed that all four roots could be permuted in 4! = 24
possible ways and only these three values would occur. This
lead him to say: To solve 5th degree polynomials one should
try to find function in 5 variables that takes on 3(or 4) different
typical values when the variables are permuted in all 5! ways.
He was unable to determine if such a function existed, but he
did come up with, in essence, the following theorem.

Lagrange’s Original Theorem

As you can see below, Lagrange’s Original Theorem greatly
differs from the theorem we see today as it involves changing
functions by permuting their values.

Theorem

If a function F (x1, x2, . . . , xn) of n variables is acted on by all
n! possible permutations of the variables and these permuted
functions take on only r distinct values then r is a division of
n!.

Example: Lagrange’s Theorem for C6

We can use C6 as an example to show the main ideas behind
Lagrange’s Theorem. C6 = {1,g,g2,g3,g4,g5} (where
g6 = 1) has as one of its subgroups H = {1,g3}. If we
multiply H on the right by each element of C6 in turn we find
the different right cosets of H in G.

{1,g3}, {g,g4}, {g2,g5}

If we use three different colours for each of the right cosets
we see that H = {1,g3} shifts through each element of C6 as
we multiply H on the right by elements of C6.

C6 = {1,g,g2,g3,g4,g5}

There are three distinct cosets.
I Two cosets are either equal or disjoint.
I Every element of G is in exactly one right coset.
I Each right coset is the same size as H.
These are the key ideas needed to prove Lagrange’s
Theorem.
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