The Group of Symmetries of the Cube

Introduction

The cube is a shape made up of 6 faces, 8 vertices and 12 edges. The cube has 24 rotational symmetries and they form a group that is a copy of S4, the group of permutations of four objects. It also has 24 reflections among
the 9 planes of reflection. This makes up in total the 48 isometries of the cube.

All 24 permutations of the diagonals can
be generated by any 2 rotations

Let the rotation A be a rotation clockwise about the vertical axis (as shown in the diagram) and Rotation B be a rotation about the horizontal axis.

- Rotation $A\left(R_{4}\right)$ -

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 1 & 6 & 7 & 8 & 5
\end{array}\right)
$$

i.e the rotation takes $1->2$ for example

Rotation $B\left(R_{B}\right)$

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 6 & 7 & 3 & 1 & 5 & 8 & 4
\end{array}\right)
$$

ie the rotation takes $3->7$ for example
Now we can combine both of these matricies of permutations to generate another, and/or combine it with itself multiple times to get a get different permutations. For Example,

- $\left(R_{A}\right)^{2}=$

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 7 & 8 \\
2 & 3 & 4 & 1 & 6 & 7 & 8 & 5
\end{array}\right) \times\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 1 & 6 & 7 & 8
\end{array}\right)
$$

$$
\text { Notice here that } 1->2->3 \text {, i.e } 1->3
$$

$\square\left(R_{A}\right)^{3}$ also produces a new permutation, i.e sending $3->4->1->2$, i.e 3
$->2$.
\square Same goes for $\left(R_{B}\right)^{2},\left(R_{B}\right)^{3}$, But when you apply a rotation a 4th time, i.e $\left(R_{A}\right)^{4}$ or $\left(R_{B}\right)^{4}$, each vertex returns to its original position, also know as the identity rotation (I)

- We can now induce a subgroup of order $8=$
$\left\{I, R_{A},\left(\mathrm{R}_{A}\right)^{2},\left(\mathrm{R}_{A}\right)^{3},\left(\mathrm{R}_{B}\right)^{2},\left(\mathrm{R}_{B}\right)^{2} R_{A},\left(\mathrm{R}_{B}\right)^{2}\left(\mathrm{R}_{A}\right)^{2},\left(\mathrm{R}_{B}\right)^{2}\left(\mathrm{R}_{A}\right)^{3}\right\}$
- And a subgroup of order 3
$\left\{I, R_{A} R_{B},\left(R_{A} R_{B}\right)^{2}\right\}$
- Calculating the LowestCommonMultiple (lcm) of both orders of the subgroups give you 24 , i.e the number of all permutations generated by 2 rotations.

Fi. 2. The Reflection Planes of The Cube

Rotational Matrices

Take a set of all 3×3 permutation matrices and assign a + or $\mathrm{a}-$ to each of the 1's in the matrix. There are 6 matrices and 8 different sign permutations, that's 48 matrices in total giving the whatices and 8 different sign permutations, that exactly 24 matrices with determinant $=+1$ ond these are the rotatione. There ar the octahedral group.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
+1 & 0 & 0 \\
0 & 0 & +1 \\
0 & -1 & 0
\end{array}\right| \\
& \left|\begin{array}{ccc}
0 & +1 & 0 \\
0 & 0 & +1 \\
+1 & 0 & 0
\end{array}\right| \\
& \left|\begin{array}{ccc}
0 & +1 & 0 \\
+1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right|
\end{aligned}
$$

The other 24 matrices with determinant of -1 correspond to a reflection or inversion.

$$
\left|\begin{array}{ccc}
+1 & 0 & 0 \\
0 & +1 & 0
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
0 & +1 & 0 \\
0 & 0 & -1
\end{array}\right|
$$

$$
\left\lvert\, \begin{array}{lll}
+1 & 0 & 0
\end{array}\right.
$$

$$
\left|\begin{array}{ccc}
+1 & 0 & 0 \\
0 & 0 & +1 \\
0 & +1 & 0
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
0 & +1 & 0 \\
+1 & 0 & 0
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
+1 & 0 & 0 \\
0 & 0 & +1
\end{array}\right|
$$

Orbit Stabilizer Theorem

Let G be a group that acts on a set X , let x be an element of X , let O_{x} be the orbit of x and let S_{x} be the stabilizer of x. Then $\left|O_{x}\right|\left|S_{x}\right|=|G|$
In words, the size of the group is the size of the orbit times the size of the stabilizer Proof: Here are two equivalence relations on G. For the first, I define $g \sim_{1} h$ i $g x=h x$. For the second, I define $g \sim_{2} h$ if $h^{-1} g \in S_{x}$. Note that this is the same as saying that $g^{-1} h \in S_{x}$ and also the same as saying that $g S_{x}=h S_{x}$.
Now $g x=h x$ if and only if $h^{-1} g x=x$ if and only if $h^{-1} g \in S_{x}$. So the two equivalence relations are the same. The number of equivalence classes for the firs relation is $\left|O_{x}\right|$ and the size of each equivalence class for the second relation is
obviously $\left|S_{x}\right|$,so the result is proved.

