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Chapter 1

What is a group?

1.1 Examples

This section contains a list of algebraic structures with different properties. Although these objects
look different from each other, they do have some features in common, for example they are all
equipped with algebraic operations (like addition, multiplication etc.). Several involve matrix
multiplication. The properties of these operations can be studied and compared. An important
theme of group theory (and all areas of abstract algebra) is the distinction between structural and
superficial similarities and differences in algebraic structures - the meaning of this distinction will
become precise as we continue, but hopefully these examples and comments can already give a
sense of it.

1. (Z,+)
Z is the set of integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
The “+” indicates that we are thinking of Z as being equipped with addition. This means
that given any pair of integers a and b we can produce a new integer by taking their sum
a + b. Moreover, the integer 0 has a neutral property with respect to addition - adding it to
another integer has no effect on that other integer. Not only that, but every integer has a
negative that is also an integer, such as 3 and −3, −105 and 105 etc. The relationship between
an integer and its negative is that when we add them together we get the neutral element 0
- this means that the effect of adding 5 to some integer x can be undone by adding −5. In
the language of group theory, the integers −5 and 5 are inverses of each other with respect
to the addition operation on Z.

2. (C×,×)
Here C× denotes the set of non-zero complex numbers, and “×” denotes multiplication of
complex numbers. So for example

(2 + 3i)× (1 − i) = 5 + i.

The product of two elements of C× is always an element of C× (we say that C× is closed
under multiplication of complex numbers). So “×” is a binary operation on C×.
Note that the number 1 is neutral for multiplication on C× - multiplying by 1 has no effect
on any complex number. Moreover, every element of C× has an inverse for multiplication,
this is its reciprocal. For example the inverse of 1 + 2i is

1
1 + 2i

=
1

1 + 2i
× 1 − 2i

1 − 2i
=

1 − 2i
5

=
1
5
−

2
5
i.

The property that a complex number and its inverse have together is that their product is the
neutral element 1 - this means that the effect of multiplying by one of them can be reversed
by multiplying by the other. If we included the number 0 in our set we would lose this last
property, since 0 does not have an inverse for multiplication in C.
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3. (GL(2,Q),×)
Read this as “the general linear group of 2 by 2 matrices over the rational numbers” (“GL”
stands for “general linear”).

GL(2,Q) =

��
a b
c d

�
: a,b, c,d ∈ Q;ad− bc �= 0

�
,

so we are talking about the set of 2 by 2 matrices that have rational entries and have non-zero
determinant or equivalently that have inverses. The “×” here stands for matrix multiplica-
tion. Note that if A and B are elements of GL(2,Q), then so also are their matrix products
AB and BA (which might be not be the same).
Question: Is this obvious? Why is it true?
Question: What is the “neutral element” in this example? Does every element have an in-
verse?
Question: Why is attention restricted to the matrices with non-zero determinant in this
example?

4. ({1, i,−i,−1},×)
Here we are talking about the set of complex fourth roots of unity, under multiplication
of complex numbers. Note that this set is closed under multiplication, meaning that the
product of any two elements of the set is again in the set. You can check this directly by
writing out the whole multiplication table (a worthwhile exercise at this point). You can
also idenify the neutral element and the inverse of each element. Note that this example
(which involves a finite set) is a subset of the infinite example 2. above, with the same
operation.

5. Let S3 denote the following set of 3 × 3 matrices.

S3 =








1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 0 1
0 1 0


 ,




0 0 1
0 1 0
1 0 0


 ,




0 1 0
1 0 0
0 0 1


 ,




0 1 0
0 0 1
1 0 0


 ,




0 0 1
0 1 0
1 0 0





 .

What happens when you mutiply two elements of S3? Do you get an element of S3 (in alge-
bra language, is this set S3 closed under matrix multiplication)? If so, is this an accident, or does
it follow from some special property of the matrices in S3? Does S3 have a neutral element
for multiplication? Does every element of S3 have an inverse in S3 for multiplication?

Now let S4 denote the set of all permutations of the set {a,b, c,d}.
Recall that a permutation of the set {a,b, c,d} is a bijective function from the set to itself. The
permutation

a −→ d

b −→ b

c −→ a

d −→ c

is sometimes written as
�

a b c d
d b a c

�
.

Given two permutations σ and τ of {a,b, c,d}, we can compose them to form the functions
σ◦τ (σ after τ) and τ◦σ (τ after σ). This composition works as for any functions and is often
referred to as multiplication of permutations.

Claim: The functions σ ◦ τ and τ ◦ σ are again permutations of {a,b, c,d}.
Why is this true? What you have to do to answer this is show that these compositions are
again bijective functions from {a,b, c,d} to itself - this means that they take each of the four
elements to a different image.

Question: Would you expect σ ◦ τ and τ ◦ σ to be the same function? If in doubt, try some
examples.
Question: What is the connection between S3 in the first part of this example and S4 in the
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second part? Are they closely related in some way that justifies giving them almost the same
name? This is a question that is close to the heart of at least one important theme of group
theory. Even if you don’t have the language yet to articulate an answer to it, think about
what kind of functions the matrices in S3 might represent. Remember that matrices can
be interpreted as linear transformations, and that matrix multipication then corresponds to
composition of linear transformations.

Remark: To study group theory and abstract algebra, you may need to relax and expand
your understanding of the meaning of the word multiplication. Multiplication of integers
means something very specific: 5 × 7 is the number that you get from the addition 5 +
5 + 5 + 5 + 5 + 5 + 5 or 7 + 7 + 7 + 7 + 7 (why are these the same?). Mutiplication of
real numbers (or complex numbers) are natural extensions of that. In advanced algebra the
word “multplication” is often used for operations that don’t resemble these familiar ones
at all (this already happens in the case of matrix multiplication). It is a good idea to get
used to thinking of the word multiplication as just meaning “a way of combining pairs of
elements”.

6. Let D8 be the following set of 2 × 2 matrices.
��

1 0
0 1

�
,
�

0 −1
1 0

�
,
�

−1 0
0 −1

�
,
�

0 1
−1 0

�
,
�

1 0
0 −1

�
,
�

−1 0
0 1

�
,
�

0 −1
−1 0

�
,
�

0 1
1 0

�

Note that D8 is closed under matrix multiplication, the product of any pair of elements of D8 is
again in D8. Also D8 contains the inverse of each of its elements - check this. So D8 is a “self-
contained” algebraic structure - by taking its eight elements, multiplying them together as
much as you like, and inverting them, you don’t move outside the set D8.

This example has a geometric interpretation. Think of each matrix in D8 as a linear trans-
formation of the plane R2, interpreted with respect to the standard basis {(1, 0), (0, 1)}. What
do these particular transformations do? What do they do in particular to the square whose
vertices are at the points (1, 0), (0, 1), (−1, 0) and (0,−1)? This is related to the next two
examples, and to the last one.

7. General groups of symmetries
Suppose that P is some connected object in the two-dimensional plane, like a polygon or
a line segment or a curve or a disc (connected means all in one piece). The following is an
informal (and temporary) description of what is meant by a symmetry of P. Imagine that P
is an object made of a rigid material. If you can pick up this piece of material from the plane
and move it around (in 3-dimensional space) without breaking, compressing, stretching or
deforming it in any way, and put it back so that the object occupies the same space that it
originally did, you have implemented a symmetry of P.

For example, if P is a circular disc, then symmetries of P include rotations about the centre
through any angle, reflections in any diameter, and any composition of operations of these
kinds. Two symmetries are considered to be the same if P ends up in exactly the same
position after both of them - for example in the case of the circular disc, a counter-clockwise
rotation about the centre through a full 360◦ is the same as the rotation through 0◦ or the
rotation through 720◦.

8. Symmetries of an equilateral triangle
Consider an equilateral triangle with vertices labelled A,B,C as in the diagram. For this
example it does not matter whether you think of the triangle as consisting just of the vertices
and edges or as a solid triangular disc.
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The triangle has six symmetries:

• the identity symmetry I, which leaves everything where it is

• the counterclockwise rotation R120 through 120◦ about the centroid

• the counterclockwise rotation R240 through 240◦ about the centroid

• the reflections in the three medians: call these TL, TM, TN.

Let D6 denote the set of these six symmetries.
Note that the first three (the rotations) preserve the order in which the vertices A,B,C are
encountered as you travel around the perimeter in a counter-clockwise direction; the last
three (the reflections) change this order. If you think of the object as a “filled-in” disc, the
reflections involve flipping it over and the rotations don’t. (Note that the identity permuta-
tion is considered to be a rotation, through 0◦ - or any integer multiple of 360◦. It is certainly
not a reflection).

Now that we have these six symmetries, we can compose pairs of them together.

Example: We define R120 ◦ TL (read the “◦” as “after”) to be the symmetry that first reflects
the triangle in the vertical line L and then applies the counter-clockwise rotation through
120◦. The overall effect of this leaves vertex B fixed and interchanges the other two, so it is
the same as TM - convince yourself of this, using a physical triangle if necessary. For every
pair of our six symmetries, we can figure out what their composition is and write out the
whole composition table, which is partly completed below. The entry in this table in the
position whose row is labelled with the symmetry τ and whose column is labelled with the
symmetry σ is τ ◦ σ.

(D6, ◦) I R120 R240 TL TM TN
I I R120 R240 TL TM TN

R120 R120 R240 I TM TN TL
R240
TL TL TN TM I R240 R120
TM
TN

Important Exercise: By thinking about the compositions of all these symmetries, verify the part of the
above table that is filled in and fill in the rest of it. You should find that each element of D6 appears
exactly once in each row and in each column.

One way to think about symmetries of the triangle is as geometric operations as above.
Another is as permutations of the vertices. For example the reflection in the line L fixes the
vertex A and swaps the other two, it corresponds to the permutation

�
A B C
A C B

�
.
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The rotation R120 moves vertex A to the position of C, B to the position of A, and C to the
position of B. It corresponds to the permutation

�
A B C
C A B

�
.

Another Important Exercise: Write down the permutations corresponding to the remaining elements
of D6 and verify that with this interpretation the composition of symmetries as defined above and the
multiplication of permutations really amount to the same thing in this context (this means confirm-
ing that the permutation corresponding to the composition of two symmetries of the triangle is what
you would expect based on the product of the two corresponding permutations).

Does every permutation of the vertices of the triangle arise from a symmetry? If so, what
the second important exercise is really saying is that the set of symmetries of an equilateral
triangle (with composition) is essentially the same object as the set of permutations of the
set {A,B,C}, with permutation multiplication.

Part of our work in this course will be to precisely formulate what is meant by “essentially
the same” here and to develop the conceptual tools and language to discuss situations like
this. The examples in this section will hopefully be useful as our account of the subject
becomes more technical and abstract.

So we have two interpretations of the set (or group) of symmetries of the triangle - as a
collection of “moves”on the triangle and as a collection of permutations. Example 6 above
shows that it could also be represented as a set of 2 × 2 matrices, linear transformations of
R2.

9. Symmetries of a square
Consider a square with vertices labelled A,B,C,D (in cyclic order as you travel around the
perimeter). Let D8 denote the set of symmetries of the square.

Exercise: How many elements does D8 have? Describe them in terms of rotations and reflections.
Write down the permutation of {A,B,C,D} corresponding to each one. Does every permutation of
this set arise from a symmetry of the square? Can you figure out the details of the connection between
this interpretation of D8 and the one in Example 6 above?
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