
1.2 The axioms of a group

It’s time now to consider the formal definition of a group. After this you should carefully check
that each of the examples in Section 1.1 is indeed a group, and identify in each case the identity
element and the inverse of a typical element. The formal definition is stated below followed by
some explanatory notes.

Definition 1.2.1. A group G is a non-empty set equipped with a binary operation �, in which the following
axioms hold.

1. � is an associative operation. This means that for any elements x,y, z of G

(x � y) � z = x � (y � z).

2. Some element id of G is an identity element for �. This means that for every element x of G

id � x = x � id = x.

3. For every element x of G there is an element x−1 of G that is an inverse of x with respect to �.

Notes

1. The first line of the definition
A binary operation on a set G is a way of combining two elements of G (in specified order)
to produce a new element of G. Technically it is a function from G × G (the set of ordered
pairs of elements of G) to G. For example:

• Addition is a binary operation on the set N of natural numbers.

• Subtraction is not a binary operation on N. Why not?

• Matrix multiplication is a binary operation on the set M3(Q) of 3 × 3 matrices with
rational entries (but not on the set of all square matrices with rational entries - why?).

Implicit in the statement that � is a binary operation on G is the condition that when you
use � to combine two elements of G, the result is again an element of G, i.e. that G is closed
under �. Some authors list this as one of the axioms of a group - you may see this in some
books.

2. Associativity is a property that some operations have and that some do not. Our first axiom
says that in order for a structure to be considered a group, its binary operation must be as-
sociative. People do consider algebraic structures that have non-associative operations, the
most commonly encountered examples are Lie Algebras.
Exercise: Give an example of a familiar binary operation (on Z for example) that is not asso-
ciative.

3. An identity element for a binary operation is sometimes referred to as a neutral element, a
term which is probably more self-explanatory although less prominent. An identity element
for a binary operation � is one that has no effect on any element when combined with that
element using �. For example, 0 is an identity element for addition in Z, 1 is an identity

element for multiplication in Z,
�

1 0
0 1

�
is an identity element for multiplication of 2 × 2

matrices.
Important exercise: In each of the examples in Section 1.1, identify the identity element.

4. If we have an identity element for some binary operation, we can consider whether certain
elements have inverses or not. Two elements x and y are inverses of each other with respect
to the binary operation � if x�y and y�x are both equal to the identity element. For example,
−5 and 5 are inverses for each other with respect to addition in Z; this means that adding −5
to some integer “reverses” the work of adding 5. The rational numbers 2

5 and 5
2 are inverses

of each other for multipication in Q; this means we can “undo” the work of multiplying by
5
2 if we multiply by 2

5 . Of course we could describe these examples in terms of subtracting
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and dividing, but it is helpful to get used to thinking in terms of inverses if you can, we will
not always have notions of subtraction and division. It is entirely possible for an element
to be its own inverse - this is the case for the identity element of every group, and also for

example for the reflections in D6 or for the element
�

0 1
1 0

�
of GL(2,Q).

Important exercise: In each of the examples in Section 1.1, identify the inverse of a typical
element.

Note: In order to talk about inverses, you must have a particular binary operation in mind
and your set must have an identity element for that operation.

Definition 1.2.1 is the criterion that decides whether a given algebraic structure is a group or not.

Problem 1.2.2. Let UT3(Q) be the set of 3×3 upper triangular matrices with rational entries. Is UT3(Q)
a group under matrix multiplication?

Recall that a square matrix A is upper triangular if all entries below its main diagonal are zeros (or
equivalently if Aij = 0 whenever i > j). To answer this question you must ask yourself:

• Is UT3(Q) closed under matrix multiplication?

• Is the operation associative? (In most examples of interest the answer is yes as in this case -
multiplication of n× n matrices is always associative).

• Does this set contain an identity element for the operation? (In this example this question
amounts to whether the identity element for multiplication of 3 × 3 matrices is upper trian-
gular).

• Does every element of the set have an inverse that belongs to the set?

To confirm that your object is a group, you need to check that all of these questions have a positive
answer. If you find that one of them has a negative answer, that is enough to justify the conclusion
that your object is not a group. The answer is no in the case of Problem 1.2.2. Why?

Problem 1.2.3. Let S be the set of 3 × 3 upper triangular matrices with rational entries, in which no
element has a zero entry on the main diagonal. Is S a group under matrix multiplication?

We conclude this section by mentioning two obvious and important dichotomies in group the-
ory. Definition 1.2.1 says that a group must be a non-empty set but says nothing about how many
elements it can have. A group is called infinite if it has infinitely many elements and finite if it
has finitely many elements. The study of infinite groups tends to have quite a different flavour
from the study of finite groups, essentially because in the later case we can do things like count
elements (in the whole group or in a subset of interest).

Exercise Determine which of the examples in Section 1.1 are finite.

Recall that a binary operation � on a set S is commutative if

x � y = y � x

for all elements x,y of S. There is nothing in Definition 1.2.1 requiring that a group operation
be commutative. A group whose operation is commutative is called abelian, after the Norwegian
mathematician Niels Henrik Abel (1802–1829).

Exercise Determine which of the examples in Section 1.1 are abelian.
For example, the multiplicative group C× (or(C×,×)) of the complex numbers is abelian, but
GL(2,Q) is not.

Remark on Notation: Especially in the non-abelian case, the identity element of a group is often
referred to as 1 (whether it is the number 1 or not) and the result of combining the elements a and
b with the group operation is often just written ab - i.e. there is no particular symbol like × or ◦
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or whatever used within the product. This is just a notational convention and worth getting used
to - it makes writing simpler when you do get used to it.

Abelian groups are often written with the operation referred to as addition and denoted +,
and the identity element denoted as 0. This makes sense of course if the operation naturally is a
version of addition (of numbers, matrices or functions for example), but sometimes the additive
notation is also used in an abstract context. The symbol “+” would never conventionally be used
for a non-commutative operation.

Remark on History: The modern definition of a group (Definition 1.2.1) is nowadays a starting
point for the study of group theory. It was not the starting point in the development of the sub-
ject although it was a significant milestone. The first abstract definition of a group was given by
Arthur Cayley in 1854. This arose from several decades of work on what are now called groups of
permutations and on solving polynomial equations by Lagrange, Abel and Galois among others,
and on groups of symmetries in geometry by Klein. The introduction of an abstract definition
brought the subject into its modern form and had a massive impact on the development of alge-
bra.
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