
Chapter 2

Essential concepts of group theory

2.1 Lagrange’s Theorem

Recall the following terminology and notation. Suppose that a and b are natural numbers (pos-
itive integers). We say that a divides b if b = ka for some integer k, i.e. if b is a multiple of a or
equivalently if a is a factor of b.

Examples: 3 divides 12: we write 3|12. However 3 does not divide 14: we can express this by
writing 3 � |14.

Note: Make sure you are using this language and notation accurately (many people don’t). The
statement “a divides b” means that a is a factor of b. It has nothing to do with the number “a
divided by b”. The written shorthand for this statement is a|b; the symbol in it is a vertical bar, it
is not a forward slash or a backslash or a hyphen. In particular it has no connection to the slash
that is used in fractions as in a/b.

The purpose of this section is to explore and prove the following theorem, known as La-
grange’s Theorem. This theorem was not actually proved by Lagrange, but it was observed by
him in 1771 the case of certain groups of permutations arising from his study of solutions of poly-
nomial equations. It was proved in more generality by Gauss in 1801. We have already observed
it in the examples of the dihedral groups, and maybe you noticed it also in some of the problems
on the first homework sheet.

Theorem 2.1.1 (Lagrange’s Theorem). If G is a finite group and H is a subgroup of G, then the order of
H divides the order of G.

So for example, Lagrange’s Theorem tells us that there is no point in looking for a subgroup
with 7 elements in a group with 24 elements; no such subgroup exists.

The rest of this section will be devoted to a proof of Theorem 2.1.1, with some supporting
examples and some new concepts that will be needed for the proof. It is not immediately obvious
how we could possibly go about trying to prove this theorem, in the absence of any specific
information about the groups in question. The fact that this can be done at all demonstrates
the power of the axiomatic approach to algebra. Nevertheless it is worth mentioning that the
statement of Lagrange’s Theorem was noticed for specific examples (by Lagrange) before being
stated in a general context. New mathematical theory very frequently comes from observations
about particular examples (that are later found to apply more generally) rather than reasoning
with completely abstract concepts. The finished product is often stated and described in terms of
an abstract setting, so that it can be applied as widely as possible. This is great if what you want
to do is apply it as generally as possible, but the downside is that you can get the impression that
it came from nowhere. It probably came from (maybe decades or centuries of) an accumulation of
observations and examples, but that can sometimes be erased from the record when it is presented
in a concise and general form.

So how could we possibly go about proving that the order of a subgroup must be a factor of the
order of the whole group? How can we even relate these two numbers when we are not talking
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about a specific example? The basic idea is to show that the whole group G can be represented as
the union of a number of “shifted copies” of the subgroup H, in such a way that each copy has
the same number of elements as H and every element of G belongs to exactly one of them. We are
going to break the group into disjoint pieces each of which has the same number of elements as
H and somehow “resembles” H. The pieces, or “shifted copies” are called cosets.

Definition 2.1.2. Let G be a group and let H be a subgroup of G. Let g be an element of G. Then the left
coset of H determined by g is defined to be the set

gH = {gh : h ∈ H}.

Note: In the last line above, g is a specified element of G and h is running through all the elements
of H. So gH is the subset of G consisting of those elements that can be obtained by multiplying an
element of H on the left by g.

Example 2.1.3. Let D6 be the set of symmetries of the equilateral triangle, with rotations id, R120, R240
and reflections TL, TM and TN as shown.
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Then H = {id, TL} is a subgroup of D6 of order 2, and left cosets of H in D6 determined by the six
elements are:

1. idH = {id ◦ id, id ◦ TL} = {id, TL} = H

2. TLH = {TL ◦ id, TL ◦ TL} = {TL, id} = H again.

3. R120H = {R120 ◦ id,R120 ◦ TL} = {R120, TM}.

4. TMH = {TM ◦ id, TM ◦ TL} = {TM,R120} = R120H again.

5. R240H = {R240 ◦ id,R240 ◦ TL} = {R240, TN}

6. TNH = {TN ◦ id, TN ◦ TL} = {TN,R240} = R240H again.

Note that there are only three distinct cosets (although each appears twice in the list). Each
of these cosets has two elements (same as H) and every element of D6 appears in exactly one of
these three distinct cosets. It follows that the number of elements in D6 is 3 × 2, which means in
particular that it is a multiple of 2 which is what Lagrange’s Theorem says. This example contains
the key idea for our proof of Lagrange’s Theorem, all we have to do is express the same idea in
abstract terms and establish some properties of left cosets.

The concept of a coset is an extremely important one in mathematics, not only in group theory.
It is worth spending some time making sure that you understand it well. Here is another example.

Example 2.1.4. If G = GL(2,Q), let H denote the subgroup SL(2,Q). Recall that this means H is the
group of all matrices with determinant 1, and the group operation here is matrix multplication.
Question: What are the cosets of H in G?

For example, choose A to be some specific element of G, say A =

�
−1 2

3 4

�
.

Then the coset of H in G determined by A is the set of all matrices of the form AB, where B ∈ H.
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This means the set of all matrices AB, where detB = 1.
If detB = 1, what can we say about det(AB)? It is the same as detA, which in this example is −10.
This means the coset of H determined by A consists entirely of matrices whose determinant is
−10.
Does it contain every such matrix?
To answer this, suppose that C is a matrix in G with detC = 10. Does C belong to AH? To answer
this we have to write C as a product with A as the left factor, and see if we can figure out whether
the right factor belongs to H. We can write

C = AA−1C = A(A−1C).

Since A and C both have determinant −10, we have det(A−1C) = detA−1×detC = − 1
10×−10 = 1.

So A−1C ∈ H, and C belongs to the coset AH.
(Note: if the above reasoning doesn’t make sense to you, try it with a specific matrix of determi-
nant −10 in place of C).
We conclude that AH is exactly the set of matrices in G whose determinant is −10, the same as
that of A. So the distinct cosets of H in G are exactly the sets of matrices with the same (specified)
determinant. There is one coset for every rational number - one consisting of those matrices with
determinant 1 (this is H itself), one with those of determinant −10, etc. Apart from H itself, the
cosets of H in G are not subgroups of G (why?) - but they do have some recognizable structure,
namely in this case that they are the maximal subsets on which the determinant has a constant
value. Finally note that if A and A � have the same determinant, then the cosets AH and A �H are
the same set.

Example 2.1.5. Suppose that 5Z denotes the subgroup of (Z,+) consisting of all multiples of 5.
What are the cosets of 5Z in Z? How many of them are there? Remember that the group operation
here is addition, so (for example) the coset of 5Z in Z determined by 7 is

7 + 5Z = {. . . , 7 + (−10), 7 + (−5), 7 + 0, 7 + 5, 7 + 10, . . . } = {. . . ,−8,−3, 2, 7, 12, . . . }.

If two integers a and b determine the same coset of 5Z in Z, what is the relationship between a
and b?

We have the following important observations.

Lemma 2.1.6. Suppose H is a finite subgroup of a group G and that g ∈ G. Then gH has the same number
of elements as H.

Proof. Write k for the order of H and write h1,h2, . . . ,hk for the elements of H.
So the elements of gH are gh1,gh2, . . . ,ghk. It looks like gH has k elements, to confirm this we just
have to confirm that there is no repetition in this list. So suppose that ghi = ghj for some i and j
in the range 1, . . . , k. We can multiply both sides of this equation on the left by g−1 to deduce that
this means hi = hj and hence i = j. So the ghi are distinct for i = 1, . . . ,k and the coset gH has
the same number of elements as H.

Lemma 2.1.7. Suppose that g1 and g2 are elements of a group G and that H is a subgroup of G. Then either
the cosets g1H and g2H are equal to each other or they are disjoint from each other, i.e. their intersection is
empty, they have no element in common.

Note: Since g1H and g2H are sets (subsets of G), what it means to say that they are equal is that
they contain exactly the same elements. A standard approach to presenting a proof that two sets
A and B are equal is to show that every element of A belongs to B (so A ⊆ B) and that every
element of B belongs to A (so B ⊆ A).

Proof. If g1H and g2H have no element in common then there is nothing to do. So suppose that
these two sets do have at least one element in their intersection. This means that there are elements
h1 and h2 of H for which

g1h1 = g2h2.
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(To see this, note that elements of g1H have the form g1h where h ∈ H, and elements of g2H have
the form g2h where h ∈ H. An element that belongs to both of these sets must simultaneously be
equal to g1h1 and to g2h2, for some elements h1,h2 of H).

Now that g1H and g2H have non-empty intersection, we need to show that these sets must
actually be equal. We must make use of the fact that H is a group. First we show that g1H ⊆ g2H.

Let h ∈ H. We want to show that g1h ∈ g2H. We know that g1 = g2h2h
−1
1 , so we can write

g1 = g2h2h
−1
1 =⇒ g1h = g2h2h

−1
1 h = g2(h2h

−1
1 h).

Now since H is closed under the operation of G and under taking inverses, we know that the
element h2h

−1
1 h belongs to H, and hence that g1h belongs to the left coset g2H. Thus g1H ⊆ g2H.

A similar argument, using the fact that g2 = g1h1h
−1
2 , shows that g2H ⊆ g1H. Hence g1H =

g2H as required.

Lemma 2.1.7 says that two left cosets of a subgroup H in a group G are equal to each other if
they intersect at all. This (and our proof above) applies to all groups not just finite groups. Note
that the proof uses both the fact that H is closed under the group operation and the fact that it
contains the inverse of each of its elements.

Lemma 2.1.8. If g is an element of a group G and H is a subgroup of G, then g belongs to some left coset
of H in G.

Proof. For example, g belongs to the left coset gH, since idG ∈ H.

The significance of Lemma 2.1.8 is that it shows that the union of the various left cosets of H
in G is the full group G.

We are now in a position to prove Lagrange’s Theorem by putting all of these facts together
in the context where G is a finite group. In this case we know that G is the union of the distinct
left cosets of H, that each of these has the same number of elements, and that they don’t intersect
each other. So to count the elements of G we just need to add up the numbers in each coset - this
is essentially the proof.

Theorem 2.1.1. If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.

Note: We will use the notations |G| and |H| respectively for the orders of G and H. (This is standard
in group theory).

Proof. Since G is a finite group there are finitely many left cosets of H in G. Let H,g2H, . . . ,gkH be
the distinct left cosets of H in G. (We have seen that two elements of G may determine the same
left coset - what the word distinct here means is that each coset is counted only once). By Lemma
2.1.6, each of these cosets has exactly |H| elements. By Lemmas 2.1.7 and 2.1.8, each element of G
appears in exactly one of them. Thus the number of elements of G is

|H|+ |H|+ · · ·+ |H|� �� �
k

= k|H|.

So the order of G is an integer multiple of H.

Definition 2.1.9. If H is a subgroup of a finite group G, then the integer |G|

|H|
is called the index of H in G

and denoted by [G : H].
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