
2.3 Conjugacy in symmetric groups

Definition 2.3.1. The group consisting of all permutations of a set of n elements is called the symmetric
group of degree n and denoted Sn.

REMARKS

1. The order of Sn is n!, the number of permutations of n objects (read this as “n factorial”).

2. We often think of the n elements being permuted as the first n positive integers 1, 2, . . . ,n,
but this is not intrinsic to the definition of Sn. It doesn’t really matter what these elements
are called as long as they have distinct labels.

3. Although the terminology is potentially problematic, it is important not to confuse the term
“symmetric group” with groups of symmetries of (for example) regular polygons.

This section starts with a reminder of how to represent permutations and how to do calcu-
lations with them. We then give a combinatorial description of conjugacy classes in symmetric
groups.

An element of S4 is a permutation of the set {1, 2, 3, 4}; this means a function from that set to
itself that sends each element to a different image, and hence shuffles the four elements. In S4, a
basic way to represent the permutation 1 → 1, 2 → 4, 3 → 2, 4 → 3 is by the array

�
1 2 3 4
1 4 2 3

�
.

Representing permutations like this we can practise multiplying (or composing) them. In these
notes we will use the convention that for permutations σ and τ, the product στ means “σ after τ
or σ ◦ τ, i.e. that the factor that is written on the right is applied first. This is not a universally
agreed convention and people use both possible interpretations. For this course it is probably a
good idea that we all share the same interpretation to avoid confusion, but in general all that is
important is that you state in which order you are considering the composition to take place and
that you are consistent.

Example 2.3.2. In S5, suppose that

σ =

�
1 2 3 4 5
2 3 5 4 1

�
, τ =

�
1 2 3 4 5
4 2 3 5 1

�
.

Calculate the products στ and τσ.

Solution: To calculate στ, we apply τ first and then σ. Remember that this is just a composition
of functions.

• τ sends 1 to 4, then σ sends 4 to 4. So στ sends 1 to 4.

• τ sends 2 to 2, then σ sends 2 to 3. So στ sends 2 to 3.

• τ sends 3 to 3, then σ sends 3 to 5. So στ sends 3 to 5.

• τ sends 4 to 5, then σ sends 5 to 1. So στ sends 4 to 1.

• τ sends 5 to 1, then σ sends 1 to 2. So στ sends 5 to 2.

We conclude that

στ =

�
1 2 3 4 5
2 3 5 4 1

��
1 2 3 4 5
4 2 3 5 1

�
=

�
1 2 3 4 5
4 3 5 1 2

�

You would not be expected to provide all this detail in every example like this, it is provided
here to explain how the process works. It’s a good idea to practise this so that you can do the
calculation in one line. The answer to the second part is

τσ =

�
1 2 3 4 5
4 2 3 5 1

��
1 2 3 4 5
2 3 5 4 1

�
=

�
1 2 3 4 5
2 3 1 5 4

�
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This array format is not the only way of representing a permutation and not always the most
useful way. Another way of thinking about a permutation π is by thinking about how it moves
the elements of the set around, by starting with a single element and looking at the sequence of
images when you repeatedly apply π to it. Eventually you will have to get back to the original
element. Consider the following example in S14.

π =

�
1 2 3 4 5 6 7 8 9 10 11 12 13 14

11 9 8 2 5 1 12 14 6 7 3 13 10 4

�

Start with the element 1 and look at what happens to it when you repeatedly apply π.

• First you get 1 → 11;

• Then 11 → 3;

• Then 3 → 8;

• Then 8 → 14;

• Then 14 → 4;

• Then 4 → 2;

• Then 2 → 9;

• Then 9 → 6;

• Then 6 → 1.

After nine applications of π we arrive back at 1 and this is the first time we have a repetition in the
list. This will happen every time: the list can’t continue indefinitely without repetition because
there are only finitely many elements being permuted. Suppose that after starting at 1 the first
repetition occurs at Step k, after k applications of π. Then we have

1 → a1 → a2 → · · · → ak−1 →

where 1,a1, . . . ,ak−1 are distinct. The next element (ak) is a repeat of one of these. However it
can’t be a repeat of a1, because 1 is the only element whose image under π is a1, and ak−1 �= 1.
The same applies to a2, . . . ,ak−1. So it must be that 1 (the element where we started) is the first
element to be repeated, and that we close the circle that started with 1. In our example above
there were nine distinct elements in the sequence that started at 1. So the permutation π produces
the following cycle:

1 → 11 → 3 → 8 → 14 → 4 → 2 → 9 → 6 → 1

This cycle is often written using the following notation:

(1 11 3 8 14 4 2 9 6).

Note that 1 is not written at the end here. The above notation means the permutation (of 14
elements in this case) that sends 1 to 11, 11 to 3, etc, and sends 6 back to 1. There is nothing in
the notation to indicate that we are talking about an element of S14 - this has to be clear from the
context. Also, it is understood that elements that are not mentioned in the above notation are
fixed by the permutation that it denotes. The permutation (1 11 3 8 14 4 2 9 6) is an example of
a cycle of length 9 in S14. It is not the same as the permutation π that we started with, but it does
coincide with π on the set of nine elements that can be obtained by starting at 1 and repeatedly
applying π. This set is called the orbit of 1 under π.

The point of this discussion is that π can be written as a product (or composition) of disjoint
cycles in S14. The next step towards doing so is to look for the first element (in the natural order)
of our set that is not involved in the first cycle. This is 5. Go back to π and see what happens to 5
under repeated application of π. We find that

5 → 5,

24



so 5 is fixed by π. We could think of this as a cycle of length 1.
There are still some elements unaccounted for. The first one is 7. Looking at the orbit of 7

under π, we find
7 → 12 → 13 → 10 → 7

so we get the cycle (7 12 13 10) of length 4. Note that this has no intersection with the previous
cycles.

Our conclusion is that π can be written as the product of these disjoint cycles:

π = (1 11 3 8 14 4 2 9 6)(7 12 13 10).

If you like you can explicitly include (5) as a third factor, but the usual convention is not to bother
including elements that are fixed in expressions of this nature, if an element does not appear it is
understood to be fixed.

Notes

1. The representation of π in “array” format can easily be read from its representation as a
product of disjoint cycles. For example if you want to know the image of 8 under π, just
look at the cycle where 8 appears - its image under π is the next element that appears after
it in that cycle, 14 in this example. If your element is written at the end of a cycle, like 10 in
this example, then its image under π is the number that is written in the first position of that
same cycle (so 10 → 7 here). An element that does not appear in any of the cycles is fixed
by the permutation.

2. The statement above says that π can be effected by first applying the cycle (7 12 13 10)
(which only moves the elements 7, 12, 13, 10) and then applying the cycle (1 11 3 8 14 4 2 9 6)
(which only moves the elements 1, 11, 3, 8, 14, 4, 2, 9, 6). Since these two cycles operate on dis-
joint sets of elements and do not interfere with each other, they commute with each other
under composition - it does not matter which is written first in the expression for π as a
product of the two of them. So we could equally well write

π = (7 12 13 10)(1 11 3 8 14 4 2 9 6).

3. The expression for a permutation as a product of disjoint cycles is unique up to the order
in which the cycles are written. This means that the same cycles must appear in any such
expression for a given permutation, but they can be written in different orders.

It might also be worth mentioning that a given cycle can be written in slightly different
ways, since it doesn’t matter which element is taken as the “starting point”. For example
(7 12 13 10) and (13 10 7 12) represent the same cycle.

Definition 2.3.3. The expression of an element of Sn as a product of disjoint cycles partitions the set
{1, 2, . . . ,n} into disjoint orbits. In the above example there are three orbits:

{1, 2, 3, 4, 6, 8, 9, 11, 14}, {5}, {7, 10, 12, 13}.

If two elements belong to the same orbit for a permutation π, it means that some power of π
takes one of those elements to the other. Note that fixed points do count as orbits. So the identity
element of Sn has n orbits each consisting of a single element. A permutation in Sn has just one
orbit if it is a single cycle involving all n elements.

It is good idea to practise moving between the “array representation” and “disjoint cycle rep-
resentation” of a permutation.

A definition that we have sort of been using but that hasn’t been stated yet is that of the order
of an element of a group. Try not to confuse this with the order of the group itself.

Definition 2.3.4. Let G be a group and let g ∈ G. The order of the element g is the least positive integer
k for whcih gk is the identity element. If no such k exists, g is said to have infinite order. The order of g
is the order of the cyclic subgroup generated by G.
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So, for example, the order of each of the (non-identity) rotations of D6 is 3, and the order of
each reflection in any dihedral group is 2. The order of the identity element is always 1.

In a symmetric group, the order of a cycle of length k (also called a k-cycle) is k. This is because
the cycle must be applied k times in order to map every element to itself and so obtain the identity
permutation. In order to determine the order of a general element of Sn, look at its expression as
a product of disjoint cycles. The order of the element is the least common multiple of the lengths
of the disjoint cycles that appear in it.

Example 2.3.5. What is the order of the element

π =

�
1 2 3 4 5 6 7 8
6 4 2 8 5 1 3 7

�
?

Solution: Look at the expression for π as a product of disjoint cycles:

π = (1 6)(2 4 8 7 3).

We see that π is the product of a cycle of length 2 and a cycle of length 5. These disjoint cycles
commute with each other which means that πk = id for an integer k if and only if the kth powers
of both the cycle of length 2 and the cycle of length 5 are equal to the identity. In order for the kth
power of the transposition (1 6) to be the identity, k must be even. In order for the kth power of
the 5-cycle (2 4 8 7 3) to be the identity, k must be a multiple of 5. We conclude that the order of π
is lcm(2, 5) = 10. (Note that lcm(2, 5) means the least common multiple of 2 and 5).

One nice feature of the symmetric groups is that their conjugacy classes are easy to describe.
We will say that two elements of Sn have the same cycle type if, when written as products of
disjoint cycles, they both involve the same number of 1-cycles, the same number of 2-cycles, the
same number of 3-cycles, and so on. For example, in S12, the permutations

(1 4 3 5 11)(7 8 9) and (2 8 7 12 3)(1 11 9)

both have the same cycle structure. Each of them involves one 5-cycle, one 3-cycle and four fixed
points (1-cycles).

Theorem 2.3.6. Let π = (a1 a2 . . . ak) be a cycle of length k in Sn, and let σ be any permutation in Sn.
Then the conjugate σπσ−1 is the cycle (σ(a1) σ(a2) . . .σ(ak)).

Proof. (more or less) We will see how this works for the particular example where n = 7, k = 5,

π = (1 2 3 4 5) and σ =

�
1 2 3 4 5 6 7
2 7 6 3 5 1 4

�
.

We want to consider the permutation σπσ−1. The elements 1 and 4 are sent by σ−1 to 6 and 7,
which are not moved by π, and then mapped respectively back to 1 and 4 by σ.

So 1 and 4, which are the images under σ of the fixed points of π, are fixed points of σπσ−1.
Now look at what happens to 2, 7, 6, 3, 5 which are, respectively, the images under σ of the

elements 1, 2, 3, 4, 5 that are cycled (in that order) by π. First, σ−1 sends 2, 7, 6, 3, 5 to 1, 2, 3, 4, 5
respectively. Then π cycles these around, sending the list 1, 2, 3, 4, 5 to 2, 3, 4, 5, 1. Then σ maps the
list 2, 3, 4, 5, 1 back to 7, 6, 3, 5, 2. So overall, the element σπσ−1 sends 2 → 7, 7 → 6, 6 → 3, 3 → 5
and 5 → 2. Thus this element is the cycle (2 7 6 3 5), which is exactly (σ(1) σ(2) σ(3) σ(4) σ(5)),
where π = (1 2 3 4 5).

Theorem 2.3.6 has the following important consequence.

Theorem 2.3.7. Let π be any permutation in Sn. Then every conjugate of π in Sn has the same cycle type
has π.

Proof. Let π1, . . . ,πk be the disjoint cycles in π, and suppose that σ is an element of Sn and we
want to look at the conjugate σπσ−1 of π. Now

π = π1π2 . . .πk
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and

σπσ−1 = σπ1π2 . . .πkσ
−1

= σπ1σ
−1 σπ2σ

−1 . . .σπkσ
−1.

By Theorem 2.3.6, σπiσ
−1 is the cycle of the same length as πi, that cycles the images under σ of

the elements that are cycled by πi. Since the images under σ of the disjoint orbits of π are still
disjoint,

σπ1σ
−1 σπ2σ

−1 . . .σπkσ
−1

is exactly the expression for σπσ−1 as a product of disjoint cycles. It has the same cycle type as π,
since for each i, σπiσ

−1 is a cycle of the same length as πi.

The last part of this story is that if two elements of Sn have the same cycle type, then they are
conjugate to each other in Sn. Theorem 2.3.7 and its proof show how to establish this. Again we
will do it by example. Suppose you want to show that the elements π1 and π2 are conjugate to
each other in S8, where

π1 = (1 3 4)(5 6), π2 = (4 8 7)(1 2).

Then π1 and π2 have the same cycle type obviously. Theorem 2.3.7 says that for any σ ∈ S8,

σπ1σ
−1 = (σ(1) σ(3) σ(4))(σ(5) σ(6)).

If we want this to be equal to π2 we should choose σ so that

σ(1) = 4, σ(3) = 8, σ(4) = 7, σ(5) = 1, σ(6) = 2.

For σ(2), σ(7) and σ(8) we can do whatever we like (amongst the available options). If we choose

σ =

�
1 2 3 4 5 6 7 8
4 3 8 7 1 2 5 6

�

Then we have σπ1σ
−1 = π2, as required.

Our conclusion is the following theorem.

Theorem 2.3.8. Two elements of Sn are in the same conjugacy class if and only if they have the same cycle
type.

This means that the number of conjugacy classes in Sn is equal to the number of cycle types.
This is the number of partitions of n. A partition of n is a way of writing n as a sum of positive
integers. So for example the partitions of 4 are

4 = 1 + 1 + 1 + 1, 4 = 2 + 1 + 1, 4 = 2 + 2, 4 = 3 + 1, 4 = 4.

So there are 5 partitions of 4, meaning there are five conjugacy classes in S4. The partition 1 + 1 +
1+ 1 corresponds to the cycle type with four fixed points, which means the identity permutation.
The partition 2 + 1 + 1 corresponds to the cycle type with one cycle of length 2 and two fixed
points, i.e. the transpositions (there are

�4
2

�
= 6 of these in S4). The partition 4 corresponds to the

cycles of length 4, e.g. (1 2 3 4). There are 6 of these in S4.
Unfortunately there is no neat formula that tells us how many partitions a given positive inte-

ger n has. For small values of n however, we can count them. Also, we can count the number of
elements in Sn with a given cycle type, so we can count the number of elements in each conjugacy
class. Remember also that the number of elements in a conjugacy class of any group is the index
of the centralizer of an element of that class. So we can also calculate the orders of the centralizer
of an element of each class. This information is all given below for the example of S5 - and S6 is
on Problem Sheet 3.
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CONJUGACY CLASSES OF S5

The order of S5 is 5! = 120.

1. Partition: 1+1+1+1+1
Cycle type: five fixed points
Representative of class: id
No. of elements in class: 1
Order of centralizer: 120

2. Partition: 2+1+1+1
Cycle type: one 2-cycle and three fixed points
Representative of class: (1 2)
No. of elements in class:

�5
2

�
= 10

Order of centralizer of an element of this class: 120
10 = 12

3. Partition: 2+2+1
Cycle type: two disjoint 2-cycles and one fixed point
Representative of class: (1 2)(3 4)
No. of elements in class:

�5
2

�
×

�3
2

�
× 1

2 = 15
Order of centralizer of an element of this class: 120

15 = 8

Note on Count: We have
�5

2

�
= 10 choices for the first transposition and having chosen this

we have
�3

2

�
= 3 choices for the second one. This would give 10 × 3 = 30 choices for a

pair of disjoint transpositions written in a specified order. Since the order doesn’t matter
(i.e. (1 2)(3 4) is the same permutation as (3 4)(1 2), this estimate of 30 counts every pair of
disjoint transpositions twice. We need to divide it by 2 to get the right number of elements
with this cycle type.

4. Partition: 3+1+1
Cycle type: one 3-cycle and two fixed points
Representative of class: (1 2 3)
No. of elements in class:

�5
3

�
× 2! = 10 × 2 = 20

Order of centralizer of an element of this class: 120
20 = 6

Note on Count: We have
�5

3

�
choices for the three elements to put in our cycle. Having chosen

them we have 2! ways to arrange them in cyclic order. For example if our three elements are
1,2,3, they can be arranged in cyclic order as (1 2 3) or (1 3 2).

5. Partition: 3+2
Cycle type: one 3-cycle and one 2-cycle (disjoint from the 3-cycle)
Representative of class: (1 2 3)(4 5)
No. of elements in class:

�5
3

�
× 2! = 10 × 2 = 20

Order of centralizer of an element of this class: 120
20 = 6

Note on Count: This is the same as the previous class, since having chosen the 3-cycle on one
of 20 ways we have no choice about the 2-cycle.

6. Partition: 4+1
Cycle type: one 4-cycle and one fixed point
Representative of class: (1 2 3 4)
No. of elements in class:

�5
4

�
× 3! = 5 × 6 = 30

Order of centralizer of an element of this class: 120
30 = 4

Note on Count: We have
�5

4

�
choices for the four elements to be in our 4-cycle, and having

chosen them there are 3! ways to arrange them in cyclic order. For example if our elements
are 1,2,3,4 we can agree to write 1 first in our description of the cyclic order, we have 3
choices for what to put next, 2 after that and so on.
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7. Partition: 5
Cycle type: one 5-cycle
Representative of class: (1 2 3 4 5)
No. of elements in class: 4! = 24
Order of centralizer of an element of this class: 120

24 = 5

So the number of conjugacy classes of S5 is 7. We should find that our numbers of elements in
each add up to 120:

1 + 10 + 15 + 20 + 20 + 30 + 24 = 120.

Note: We have shown that the centre of Sn (for n � 3) is trivial, since the centre consists exactly
of those elements that have only one element in their conjugacy class. Every cycle type except the
one with n fixed points is represented by more than one element.

The symmetric groups are exceptional in that their conjugacy classes have a nice combinatorial
description. This is not really typical of finite groups.
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