
1 Linear transformations and eigenvalues

In this course we will be thinking about linear algebra and about matrix theory. These subjects are
closely related and sometimes are probably considered to be indistinguishable. From an algebraic
viewpoint, maybe they could be described as follows.
Linear Algebra is the area of abstract algebra that is concerned with vector spaces and mappings
between them that respect their algebraic structure, which are linear transformaions. In the same
way, group theory deals with groups and group homomorphisms, and so on. Single variable
calculus deals with subsets of R and not with all functions between them but with those that are
amenable to the machinery of calculus such as continuous or differentiable functions (or what-
ever).
Matrix Theory is the study of the arithmetic of matrices including basis algebraic operations (ad-
dition, multiplicaton, inversion) as well as topics such as factorization, properties of eigenvalues
and eigenvectors, special features (for example symmetry, positivity, positive-definiteness, diag-
onalizabilty, canonical forms, the list goes on . . . ). The subject includes existence theorems about
special forms, properties etc as well as computational methods (and their scope and limitations).

Becasue a matrix can be considered to represent a linear transformation after a choice of basis,
and because composition of linear transformations in this context corresponds to matrix multipli-
cation, more or less every question in linear algebra can be translated to a question about matrices.
The reverse is true also although the issue of choosing a (special) basis is always present in both
directions of this translation. The upshot is that abstract linear algebra has a relatively concrete
manifestation in the world of matrices, which makes it conducive not only to building operational
understanding but also to computation. This is probably why linear algebra is considered (at least
by pedagogists) to be more accessible and “concrete” than other areas of abstract algebra.

Anyway, on to some subject matter.

Definition 1.1. Let V be a vector space over a field F. A linear transformation of V is a function
T : V → V that has the following properties:

• T(u+ v) = T(u) + T(v) for all u, v ∈ V .

• T(kv) = kT(v) for all v ∈ V and for all k ∈ F.

So T preserves the operations of addition and multiplication by scalars.
Note: If you don’t like dealing with an “arbitary field F”, just think of F as being the field R of real
numbers or the field C of complex numbers.

Thinking about examples of linear transformations of R2 or R3 can give us a very good ge-
ometric sense which is still valuable even when the geometry can’t be so easily visualized, for
example if we are in higher dimensions or working over some more obscure field.

Example 1.2. Let θ ∈ [0, 2π). The rotation Tθ : R2 → R2 rotates every vector v (visualized as an arrow
pointing from the origin) through the angle θ in a counter-clockwise sense.

From the geometric definition of addition of vectors (which says that the “terminal point” of
the vector u + v is the fourth vertex of the parallelogram that has the origin and the “terminal
points” of u and v as three of its vertices) it is clear that Tθ preserves addition. It is also clear from
the definition that Tθ respects multiplication by scalars.

A line in a vector space is a one-dimensional subspace, consisting of all scalar multiples of a
particular vector. Every non-zero vector belongs to exactly one line, and two non-zero vectors
belong to the same line if and only if they are scalar multiples of each other. The zero vector
belongs to every line.

The image of a line under a linear transformation will always be a line, since if two vectors are
scalar multiples of each other, then so are their images under any linear transformation.
Exercise: Is it true that every function from a vector space to itself that maps lines to lines is a
linear transformation?

Definition 1.3. Let T : V → V be a linear transformation. A non-zero vector v ∈ V is called an
eigenvector of T if T(v) = λv for some scalar v, called the eigenvalue of T to which v corresponds.
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So eigenvectors correspond to lines that are preserved (or mapped to themselves by T ). From
the geometry of R2 we can observe that, provided that θ �= 0 and θ �= π, the rotation Tθ has no
eigenvector in R2 - it moves every line to a different line. So it is not necessarily always true that
a linear transformation of a vector space V will have an eigenvector in V .

Every non-zero vector v ∈ R2 is an eigenvector of Tπ corresponding to the eigenvalue −1, and
every non-zero vector is an eigenvector of T0 corresponding to 1 (not so surprising since T0 is the
identity function on R2).
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