
16 Positive (semi)definite symmetric matrices

Recall (from Lecture 6) that a function B : Rn × Rn → R is an inner product if it satisfies the
following properties:

• B is a bilinear form:

– B(u+ v,w) = B(u,w) + B(v,w) for u, v,w ∈ Rn;
– B(u, v+w) = B(u, v) + B(u,w) for u, v,w ∈ Rn;
– B(λu, v) = λB(u, v) for λ ∈ R and u, v ∈ Rn;
– B(u, λv) = λB(u, v) for λ ∈ R and u, v ∈ Rn.

• B is symmetric: B(u, v) = B(v,u) for all u, v in Rn.

• B is positive definite: B(u,u) > 0 for all non-zero u ∈ Rn.

All of this taken together says that an inner product on a real vector space V is a positive definite
symmetric bilinear form. For this definition there is no requirement that V be finite dimensional
although that will be the case of interest to us.

Theorem 16.1. If B is an inner product on V , then the function ||.||B : V → R defined by ||v|| =
�
B(v, v)

is a vector norm.

Proof coming later.
Now suppose that B is a bilinear form (as defined above) on a vector space of dimension n

over a field F, and let B = {b1, . . . ,bn} be a basis of V . Let u =
�

uibi and v =
�

vibi be
vectors in V . (We write u and v also for the column coordinate vectors with entries u1, . . . ,un and
v1, . . . , vn). Write aij for the real number B(bi,bj), and let A be the n×n matrix whose (i, j)-entry
is aij. Then

B(u, v) = B(u1b1 + · · ·+ unbn, v)
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= uTAv.

Definition 16.2. The matrix A is called the Gram matrix of the bilinear form B with respect to the basis
{b1, . . . ,bn}. Its (i, j) entry is B(bi,bj). For any pair of vectors u and v, we have

B(u, v) = [u]TA[v],
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where [u] and [v] respectively denote the column coordinate vectors of u and v with respect to {b1, . . . ,bn}.

Now suppose that B and C are different bases of the vector space on which B is defined, and
let P be the change of basis matrix from C to B, so [v]B = P[v]C for any vector v. Let AB and AC be
the Gram matrices of B with respect to B and C respectively. The relationship (in matrix algebra
terms) between these two matrices can be identified as follows. Let u and v be vectors. Then

B(u, v) = [u]TBAB[v]B

= (P[u]C)
TABP[u]C

= [u]TCP
TABP[u]C.

We conclude that AC = PTABP, where P is the change of basis matrix from C to B. This motivates
the following definition.

Definition 16.3. Let A and B be square matrices. Then A and B are congruent if there exists an invertible
matrix P for which

B = PTAP.

Note that congruence is an equivalence relation on Mn(F) for a field F. It has the role for
bilinear forms that similarity has for linear transformations. If two matrices are congruent they
are Gram matrices for the same bilinear form with respect to different bases. If two matrices are
similar they represent the same linear transformation with respect to different bases. Given a
basis, a matrix may be considered to represent a linear transformation or a bilinear form. In the
first case, the equivalence relation of interest is similarity, in the second case it is congruence. It is
possible for two matrices to be congruent but not similar, or similar but not congruent, or neither,
or both. Note that if P is an orthogonal matrix (so PT = P−1) then the expression B = PTAP
simultaneously demonstrates the similarity and the congruence of A and B. In particular we
have shown that every real symmetric matrix is both similar and congruent to the same diagonal
matrix.
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