
32 Perron-Frobenius Theorem: context and applications

As mentioned in the last section, non-negative matrices are closely connected to graphs. If B is
a non-negative n × n matrix, the graph Γ(B) associated with B has vertex set {v1, . . . , vn}, with
an arc directed from vi to vj if and only if the entry Aij of A is non-zero (hence positive). If the
zero-nonzero pattern of B is symmetrix (i.e. if Bji is positive whenever Bij is positive) then the
graph associated with A may be regarded as undirected, since it has an arc from vi to vj if and
only if it has one from vj to vi. On the other hand, the adjacency matrix A(Γ) of a directed graph
Γ with vertices v1, . . . , vn is the matrix whose (i, j) entry is 1 if there is an from vi to vj in Γ , and 0
otherwise.

Everything that has been said here could apply equally well to any real matrix B as to a non-
negative one. The reason for restricting attention here to non-negative matrices is related to the
meaning, in terms of graphs, of the entries of the positive integer powers of a matrix.

Note that a matrix whose entries are all either 0 or 1 is referred to as a (0, 1)-matrix, and the
zero-nonzero pattern of a non-negative matrix refers to the collection of positions where entries

are zero or positive. So for example the matrices
�

1 0
2 3

�
and

�
2 0
1 1

�
have the same zero-

nonzero pattern. If B is a non-negative matrix, then A(Γ(B)) is the unique (0, 1)-matrix that has
the same zero-nonzero pattern as B.

Definition 32.1. Let Γ be a directed graph, with vertices u and v. A walk from u to v in Γ is a sequence
of arcs, where the intial vertex of the fist arc is u, the terminal vertex of the last arc is v, and the terminal
vertex if each arc is the initial vertex of the next one (so informally it’s a journey from u to v in the graph,
along arcs). The length of a walk is the number of arcs in it.

Lemma 32.2. Let Γ be a directed graph with adjacency matrix A (with respect to the ordering v1, . . . , vn
of the vertices), and let k be a positive integer. The entry in the (i, j) position of Ak is the number of walks
from vi to vj in Γ .

Proof. The proof proceeds by induction on k. If k = 1 the statement is the the (i, j) entry is 1 or 0
according as there is an arc from vi to vj or not, which is clearly true. Now assume that the lemma
holds for Ak−1 and consider the (i, j)-entry of Ak.

(Ak)ij =

n�

m=1

(Ak−1
im Amj).

By the induction hypothesis, Ak−1
im is the number of walks of length k− 1 from vi to vm. Also Amj

is 1 if there is an arc from vm to vj and 0 if not. Thus Ak−1
im Amj is the number of walks of length

k in Γ from vi to vj that have vm as their second last vertex. The sum of these numbers over m is
the total number of walks of length k from vi to vj.

Now let B be any non-negative matrix, and let A be the (0, 1)-matrix that has the same zero-
nonzero pattern as B, so A = A(Γ(B)). We observe that for every positive integer k, Bk and
Ak have the same zero-nonzero pattern. Note that this would not necessarily be true if B had
negative entries, since positive and negative contributions could cancel to produce a zero entry in
Bk where there is a positive one in Ak. This is the reason for focussing on non-negative matrices in
the graph interpretation. If B is a non-negative square matrix and k is a positive integer, the entry
in the (i, j) entry of Bk is positive if and only if there is a walk of length k from vi to vj in Γ(B).
Recall that the matrix B is primitive if and only if Bk is positive for some positive integer k. This
condition may be interpreted now as saying that there is a walk of length k in Γ(B) from every
vertex u to every vertex v (where the possibility that u = v is included). A directed graph is said to
be primitive if there is a positive integer k for which this property holds. This is a graph-theoretic
concept of primitivity that does not rely on matrices. However a graph is primitive precisely if its
adjacency matrix is a primitive matrix.

The Frobenius-Perron Theorem admits an interpretation in terms of graphs, that has been
applied by Google in its PageRank algorithm for assigning relative importance to the results of
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searches. The webpages that turn up in the search may be regarded as vertices of a graph where
there is an arc from vertex vi to vertex vj if and only if there is a link from Page i to Page j. Let n be
the number of webpages involved. Let A be the transpose of the adjacency matrix of this graph, so
that Aij = 1 if there is a link from Page j to Page i, 0 otherwise. Suppose that the number of links
from Page j is dj. We assume that a “random surfer” on Page j will leave it via a randomly chosen
link with probability 0.85, and will move to a randomly chosen page (linked from Page j or not)
with probability 0.15 (these probabilities can obviously be adjusted for different implementations
of the algorithm). We also assume that users have the opportunity to move (or stay where they
are) at discrete time steps. We assume also that all links are equally likely to be chosen if a move
is via a link, and that all pages are equally likely to be chosen if not (these assumptions can also
be adjusted of course). In this model, the probability that a surfer at Page j will move to Page i at
a given step is given by

• 0.85
dj

+
0.15
n

, if there is a link from Page j to Page i, or

• 0.15
n

if not.

Now let B be the matrix whose (i, j)-entry is the probability that a user at Page j will move to Page
i at a given time step. Let D be the diagonal matrix whose jth diagonal entry is 1/dj (if dj �= 0),
or 0 if dj = 0. Note that

B = (0.85)AD+ (0.15)J,

where J is the n× n matrix whose entries are all 1. Now B is a positive matrix and the sum of the
entries in each column of B is 1. So the Perron-Frobenius Theorem applies to B in its strong form.
We need two theorems.

Theorem 32.3. Let A be a positive n × n matrix with the property that the entries in every column sum
to the same number k. Then k is the Perron eigenvalue of A.

Proof. Let v be the vector of length n whose entries are all equal to 1. Then it is easily observed
that vTA = kvT , since the jth entry of vTA is the sum of the entries in Column j of A. Thus vT

is a left eigenvector of A, and since v is a positive vector if follows from the Perron-Frobenius
Theorem that k is the Perron eigenvalue, or spetral radius, of A.

Note that the same statement and proof (with v instead of vT ) would apply to a matrix whose
row sums are all equal to k.

If follows from Theorem 32.3 that the Perron eigenvalue of the PageRank matrix B above is 1.

Theorem 32.4. Let A be a positive n × n matrix with Perron eigenvalue (or spectral radius) 1. Let v be
any positive vector in Rn. Then the sequence

v,Av,A2v, . . .

converges to a Perron eigenvector of A (with probability 1) or to the zero vector (with probability zero).

Note: the key statement here is that the sequence converges to a vector w for which Aw = w.
There are some choices of v for which this will fail but a random choice of v is almost guaran-
teed to succeed. This technical point is explained in the proof below. The proof is subject to the
simplifying assumption that A is diagonalizable. This assumption simplifies the proof but is not
necessary for the statement.

Proof. Let 1, λ2, . . . , λn be the eigenvalues of A, so |λi| < 1 for i � 2 by the Perron-Frobenius
Theorem. Assume that A is diagonalizable and let {v1, . . . , vn} be a basis of Rn consisting of
eigenvectors of A, where Av1 = v1 and Avi = λivi for i � 2. Now

v = a1v1 + a2v2 + · · ·+ anvn,
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and for a positive integer k

Akv = a1A
kv1 + a2A

kv2 + · · ·+ anA
kvn = a1v1 + a2λ

k
2 v2 + · · ·+ anλ

k
nvn.

Since |λi| < 1 for i � 2, λki → 0 as k → ∞. Hence the sequence (Akv) converges to a1v1, which is
a Perron eigenvector of A unless a1 = 0, in which case it is the zero vector.

We now return to the PageRank matrix B. At the outset, let x be the vector whose jth entry xj
is the proportion of “random surfers” who are on Page j at a given time. The ith entry of Bx is

(Ax)i =

n�

j=1

Bijxj =

n�

j=1

P(j → i)xj,

where P(j → i) is the probability that a random surfer at page j moves to Page i in a given step.
Thus

�n
j=1 P(j → i)xj is the proportion of the overall population that will be at Page i one step

after the step whose population distribution is described by the vector x, and so the vector Bx
describes the population distubution one step later. By Theorem 32.4, the sequence x,Bx,B2x, . . .
converges to a vector y for which By = y and

�
yi = 1. Thus y describes a steady state of the

system and its jth entry is the proportion of the surfing population that we be at Page j in the
long term. Note that individuals continue to move between pages; what this is saying is that
the dynamics settle down to a steady state where the overall proportions of the population at
the various pages stabilizes. The pages are then ranked in terms of importance according to the
entries of this Perron eigenvector.
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