
4 The matrix of a linear transformation

4.1 From an abstract vector space to the space of column vectors

Throughout this section, we are thinking about a vector space V of dimension n over a field F.
Let B = {b1, . . . ,bn} be a basis of V over F. This means that b1, . . . ,bn are elements of V with the
property that every element of V has a unique expression as a F-linear combination of the elements
of B. Given v ∈ V , there exist unique elements a1, . . . ,an in F for which

v = a1b1 + a2b2 + · · ·+ anbn.

We say that a1, . . . ,an are the B-coordinates of v. We can use B to identify V with the space Fn of
all column vectors of length n with entries from F, via the correspondence

v ↔




a1
...

an


 .

When necessary we will right this column vector as [v]B (but we will try to avoid this cumbersome
notation when we can).

Example 4.1. Let V be the vector space of polynomials of degree at most 3 over Q, and let B = {x3 +
1, x2 + 1, x+ 1, 1}. Then B is a basis of V over Q with respect to which the polynomial 2x3 − 2x2 + 3x− 2
is represented by the column vector 



2
−2

3
−5


 .

The general correspondence between V and Q4 determined by this basis is given by

ax3 + bx2 + cx+ d ↔




a
b
c

d− (a+ b+ c)


 .

Thus all vector spaces of dimension n over F can be identified with Fn (in multiple ways)
and hence with each other. Moreover, you can check that the correspondence between V and Fn

defined above is a linear transformation; it respects addition and multiplication by scalars. So
all vector spaces of dimension n over F are isomorphic to each other, which means that in terms
of abstract structure there is only one vector space of a given dimension over a given field. This
statement should be interpreted with sensitivity to the context - it is not saying (for example) that
the space of rational polynomials of degree 3 is the same thing as the space of 2 × 2 matrices over
Q, but that these two objects are isomorphic as vector spaces (not as anything else, for example one
of them is a ring and the other is not).

Another thing to note is that the identification of an abstract vector space with a full space
of column vectors is not canonical, it depends on a choice of basis. In the example above there

is nothing about the particular column




2
−2

3
−5


 that intrinsically connects it to the polynomial

2x3 − 2x2 + 3x − 2, this connection depends on the choice of basis. A different choice of basis
would connect the same polynomial to a different column vector.
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4.2 The matrix of a linear transformation

Now let T : V → V be a linear transformation of V , where B = {b1, . . . ,bn} is a basis of V . With
respect to B, the vectors v,b1, . . . ,bn are all represented by column vectors, and so also are their
images under T . In particular if

v = a1b1 + · · ·+ anbn

then
T(v) = a1T(b1) + · · ·+ anT(bn),

and
[T(v)]B = a1[T(b1)]B + · · ·+ an[T(bn)]B.

From the content of Lectures 2 and 3 we can observe that this is nothing but the matrix-vector
product AB[v]B, where AB is the n× n matrix whose columns are [T(b1)]B, . . . , [T(bn)]B.

The key point is: AB is called the matrix of T with respect to the basis B, evaluating T(v) for
v ∈ V is just evaluating the matrix-vector product AB[v]B, after using the basis B to move from
the abstract vector space V into Fn. The interpretation of matrix-vector multiplication discussed
in Lectures 2 and 3, namely taking the linear combination of columns of the matrix determined
by the entries of the vector, is particularly appropriate for discussing the matrix of a linear trans-
formation.

Exercise 4.2. As in the previous example let V be the space of rational polynomials of degree at most 4,
with basis {x3 + 1, x2 + 1, x+ 1, 1}. Let T : V → V be the function defined by

T(p(x)) = p �(x) + p(0)x3.

1. Show that T is a linear transformation.

2. Write down the matrix of T with respect to this basis and use it to find T(x3 + x+ 2).

Part 1. is left for you (do go through it!). The first step here is to figure out what T is “really”
doing - p’(x) means the derivative of p(x) and p(0) is the rational number obtained by evaluating
p at 0, which is just the constant term of p(x). For part 2., we need to write the image under T of
each of the basis elements, then write their coordinate vectors with respect to our basis.

1. T(x3 + 1) = 3x2 + x3 →




1
3
0

−4


.

2. T(x2 + 1) = 2x+ x3 →




1
0
2

−3


.

3. T(x+ 1) = 1 + x3 →




1
0
0
0


.

4. T(1) = x3 →




1
0
0

−1


.

So the matrix of T with respect to this basis is

A =




1 1 1 1
3 0 0 0
0 2 0 0

−4 −3 0 −1


 .
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(Note the lines between columns here are only to emphasize the meaning of the respective columns,

they wouldn’t normally be written). The coordinate vector of x3 + x+ 2 is




1
0
1
0


 and the coordi-

nate vector of T(x3 + x+ 2) is given by the matrix-vector product



1 1 1 1
3 0 0 0
0 2 0 0

−4 −3 0 −1







1
0
1
0


 = 1




1
3
0

−4


+ 0




1
0
2

−3


+ 1




1
0
0
0


+ 0




1
0
0

−1


 =




2
3
0

−4


 .

Thus T(x3 + x+ 2) = 2(x3 + 1) + 3(x2 + 1)− 4(1) = 2x3 + 3x2 + 1.
Of course it can be verified directly from the definition of T that this is the correct answer. The

point of this exercise is not to suggest that this choice of basis and corresponding matrix is the
most convenient mechanism for evaluating T but just to demonstrate how the process works and
what the role of the basis is. Maybe it already suggests that one choice of basis might be better
than another for describing a particular linear transformation.

5 Some bases are better than others
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