5 Some bases are better than others

Given a vector space V of dimension n over a field \mathbb{F} , and a basis \mathcal{B} of V, and a linear transformation T : V \rightarrow V, we can write the \mathcal{B} -matrix of T; its columns are the \mathcal{B} -coordinate vectors of the images of the basis elements under T. Obviously, different choices of basis determine different matrices, and the following questions have (long and) interesting answers.

- 1. Is there a basis with respect to which the matrix of T has a "nice" form (e.g. diagonal, upper or power triangular, etc)
- 2. Given a pair of $n \times n$ matrices over \mathbb{F} , how can we decide whether they represent the same linear transformation or not?

If v is an eigenvector of T, i.e. $T(v) = \lambda v$ for some $\lambda \in \mathbb{F}$, and if \mathcal{B} is a basis of V whose jth element is v, then Column j of the \mathcal{B} -matrix of T has λ as its jth entry and is otherwise full of zeros. If *every* element of the basis \mathcal{B} is an eigenvector of T, then the \mathcal{B} -matrix of T is a diagonal matrix, and the converse is also true.

Theorem 5.1. The linear transformation $T : V \to V$ can be represented by a diagonal matrix with entries in V if and only if V has a basis consisting of eigenvectors of T. In this case the diagonal entries are the eigenvalues to which these basis elements correspond as eigenvectors.

We say that T is *diagonalizable* (over \mathbb{F}) in this case. Two remarks on this theorem:

1. It is possible for T not to be diagonalizable over \mathbb{F} but to be diagonalizable over some extension of \mathbb{F} . For example let T be a rotation through θ of \mathbb{R}^2 , where $\theta \notin \{0, \pi\}$. Then we have seen that T has no eigenvector in \mathbb{R}^2 and hence there is no choice of basis of \mathbb{R}^2 for which T is represented by a diagonal matrix.

With respect to the standard basis {(1,0), (0,1)} of \mathbb{R}^2 , the matrix of T is $A_T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. We can extend T to the linear transformation of \mathbb{C}^2 that multiplies every column vector with complex entries on the left by A_T . Then we can observe that $\begin{pmatrix} 1 \\ i \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -i \end{pmatrix}$ are eigenvectors, with corresponding eigenvalues $\cos \theta - i \sin \theta$ and $\cos \theta + i \sin \theta$ respectively. Thus over the field of complex numbers, T is represented by the diagonal matrix

$$\left(\begin{array}{cc}\cos\theta - i\sin\theta & 0\\ 0 & \cos\theta + i\sin\theta\end{array}\right) +$$

2. It is possible for T not to be diagonalizable over \mathbb{F} or over any extension of \mathbb{F} . Let T be the linear transformation of \mathbb{R}^2 defined by

$$(\mathbf{x},\mathbf{y})\to(\mathbf{x},\mathbf{x}+\mathbf{y}).$$

It is easily observed that T is a linear transformation. If (x, y) is an eigenvector of T corresponding to the eigenvalue λ , then

$$(x, x + y) = \lambda(x, y) \Longrightarrow x = \lambda x, x + y = \lambda y.$$

These equations are simultaneously satisfied only if x = 0 and $\lambda = 1$, which means that the eigenvectors of T are the (non-zero) points of the line x = 0, they form only a onedimensional subspace. Thus \mathbb{R}^2 does not have a basis consisting of eigenvectors of T and T is not diagonalizable over \mathbb{R} . In this case, interpreting T as a linear transformation of \mathbb{C}^2 does not help; there is still only a single line of eigenvectors. The formula $(x, y) \rightarrow (x, x + y)$ does not define a diagonalizable linear transformation over any field. **Remark**: The vector v is an eigenvector of the linear transformation corresponding to the eigenvalue λ if and only if for every basis \mathcal{B} of V the matrix equation

$$\mathsf{A}_{\mathcal{B}}[\boldsymbol{\nu}]_{\mathcal{B}} = \boldsymbol{\lambda}[\boldsymbol{\nu}]_{\mathcal{B}},$$

where $A_{\mathcal{B}}$ denotes the matrix of T with respect to \mathcal{B} . In particular, λ is an eigenvalue of $A_{\mathcal{B}}$ for every choice of \mathcal{B} , and matrices representing the same linear transformation over different bases have the same eigenvalues.

Theorem 5.2. Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of T in \mathbb{F} , with corresponding eigenvectors v_1, \ldots, v_k . Then $\{v_1, \ldots, v_k\}$ is a linearly independent set in V.

Proof. Suppose not, and let

 $a_1v_1 + \cdots + a_kv_k = 0$

be a non-trvial expression for 0 as a linear combination of the v_i with as few non-zero coefficients as possible. We can assume (after reordering if necessary) that $a_1 \neq 0$. Note that at least one other a_i is also non-zero (since $v_1 \neq 0$). In the following the first line is obtained by multiplying the above expression by λ_1 , and the second by applying T. We have

$$\begin{array}{rcl} a_1\lambda_1\nu_1+a_2\lambda_1\nu_2+\cdots+a_k\lambda_1\nu_k&=&0\\ a_1\lambda_1\nu_1+a_2\lambda_2\nu_2+\cdots+a_k\lambda_k\nu_k&=&0 \end{array}$$

Subtracting the second equation here from the first gives

$$a_2(\lambda_1 - \lambda_2)v_2 + \cdots + a_k(\lambda_1 - \lambda_k)v_k = 0.$$

Since the expressions $\lambda_1 - \lambda_i$ are non-zero for i > 1, at least one of the coefficients in this new expression is not zero, and this is a shorter expression for zero as a non-trivial linear combination of the v_i than the original one. This contradiction yields the conclusion that the v_i are linearly independent.

Notes Two consequences of this theorem:

- The number of distinct eigenvalues of a linear transformation T : V → V cannot exceed the dimension n of V (since a set of more than n vectors cannot be linearly independent). Note that we can deduce this without having to think about the characteristic polynomial. The same comment applies to any n × n matrix, since they represent linear transformations.
- 2. If V has dimension n and the linear transformation $T : V \to V$ has n distinct eigenvalues, then V has a basis consisting of eigenvectors of T and T is diagonalizable.

We conclude this section by considering the "matrix" meaning of diagonalizability. Let A be the matrix that represents the linear transformation $T : V \to V$ with respect to the basis \mathcal{B} of V, and let \mathcal{B}' be another basis of V. Let P be the matrix whose jth column is the \mathcal{B} -coordinate vector of the jth element of the basis \mathcal{B}' . Then, using the definition of matrix-vector multiplication we can observe that for any vector in V,

$$[v]_{\mathcal{B}} = \mathsf{P}[v]_{\mathcal{B}'}.$$

We refer to P as the *change of basis* matrix from \mathcal{B}' to \mathcal{B} . Note that P must be invertible since there are n linearly independent vectors in its columnspace (namely the \mathcal{B} -coordinate vectors of the elements of the basis \mathcal{B}'). Moreover, rearranging the above equation gives

$$[\mathbf{v}]_{\mathcal{B}'} = \mathsf{P}^{-1}[\mathbf{v}]_{\mathcal{B}},$$

so the change of basis matrices from \mathcal{B}' to \mathcal{B} and from \mathcal{B} to \mathcal{B}' are inverses of each other. We now note how the matrix of T with respect to \mathcal{B}' depends on A and on P. To determine this we must

ask, for a vector $v \in V$, by what matrix should we multiply $[v]_{\mathcal{B}'}$ in order to obtain $[T(v)]'_{\mathcal{B}}$. We have

$$\begin{split} [\nu]_{\mathcal{B}} &= P[\nu]_{\mathcal{B}'} \\ \Longrightarrow [T(\nu)]_{\mathcal{B}} &= AP[\nu]_{\mathcal{B}'} \\ \Longrightarrow [T(\nu)]'_{\mathcal{B}} &= P^{-1}AP\nu_{\mathcal{B}'} \end{split}$$

Thus the matrix of T with respect to \mathcal{B}' is $P^{-1}AP$.

Definition 5.3. Two matrices A and B in $M_n(\mathbb{F})$ are said to be similar (over \mathbb{F}) if there exists a nonsingular matrix $P \in M_n(\mathbb{F})$ for which

 $B = P^{-1}AP.$

Similarity is a very important relation on the set of square matrices of given size over a field. If two matrices are similar it means that they represent the same linear transformation with respect to different choices of basis. Similarity is an equivalence relation on $M_n(\mathbb{F})$ (something for you to check). A matrix A is said to *diagonalizable* if it is similar to a diagonal matrix, which means that there exists a basis of \mathbb{F}^n consisting of eigenvectors of A, or equivalently that the linear transformation from \mathbb{F}^n to \mathbb{F}^n defined as left multiplication by A is diagonalizable.