
5 Some bases are better than others

Given a vector space V of dimension n over a field F, and a basis B of V , and a linear transforma-
tion T : V → V , we can write the B-matrix of T ; its columns are the B-coordinate vectors of the
images of the basis elements under T . Obviously, different choices of basis determine different
matrices, and the following questions have (long and) interesting answers.

1. Is there a basis with respect to which the matrix of T has a “nice” form (e.g. diagonal, upper
or power triangular, etc)

2. Given a pair of n× n matrices over F, how can we decide whether they represent the same
linear transformation or not?

If v is an eigenvector of T , i.e. T(v) = λv for some λ ∈ F, and if B is a basis of V whose jth
element is v, then Column j of the B-matrix of T has λ as its jth entry and is otherwise full of zeros.
If every element of the basis B is an eigenvector of T , then the B-matrix of T is a diagonal matrix,
and the converse is also true.

Theorem 5.1. The linear transformation T : V → V can be represented by a diagonal matrix with entries
in V if and only if V has a basis consisting of eigenvectors of T . In this case the diagonal entries are the
eigenvalues to which these basis elements correspond as eigenvectors.

We say that T is diagonalizable (over F) in this case.
Two remarks on this theorem:

1. It is possible for T not to be diagonalizable over F but to be diagonalizable over some exten-
sion of F. For example let T be a rotation through θ of R2, where θ �∈ {0,π}. Then we have
seen that T has no eigenvector in R2 and hence there is no choice of basis of R2 for which T
is represented by a diagonal matrix.

With respect to the standard basis {(1, 0), (0, 1)} of R2, the matrix of T is AT =

�
cos θ − sinθ
sin θ cos θ

�
.

We can extend T to the linear transformation of C2 that multiplies every column vector with

complex entries on the left by AT . Then we can observe that
�

1
i

�
and

�
1

−i

�
are eigen-

vectors, with corresponding eigenvalues cos θ− i sin θ and cos θ+ i sin θ respectively. Thus
over the field of complex numbers, T is represented by the diagonal matrix

�
cos θ− i sin θ 0

0 cos θ+ i sinθ

�
.

2. It is possible for T not to be diagonalizable over F or over any extension of F. Let T be the
linear transformation of R2 defined by

(x,y) → (x, x+ y).

It is easily observed that T is a linear transformation. If (x,y) is an eigenvector of T corre-
sponding to the eigenvalue λ, then

(x, x+ y) = λ(x,y) =⇒ x = λx, x+ y = λy.

These equations are simultaneously satisfied only if x = 0 and λ = 1, which means that
the eigenvectors of T are the (non-zero) points of the line x = 0, they form only a one-
dimensional subspace. Thus R2 does not have a basis consisting of eigenvectors of T and
T is not diagonalizable over R. In this case, interpreting T as a linear transformation of C2

does not help; there is still only a single line of eigenvectors. The formula (x,y) → (x, x+y)
does not define a diagonalizable linear transformation over any field.
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Remark: The vector v is an eigenvector of the linear transformation corresponding to the eigen-
value λ if and only if for every basis B of V the matrix equation

AB [v]B = λ[v]B,

where AB denotes the matrix of T with respect to B. In particular, λ is an eigenvalue of AB for
every choice of B, and matrices representing the same linear transformation over different bases
have the same eigenvalues.

Theorem 5.2. Let λ1, . . . , λk be distinct eigenvalues of T in F, with corresponding eigenvectors v1, . . . , vk.
Then {v1, . . . , vk} is a linearly independent set in V .

Proof. Suppose not, and let
a1v1 + · · ·+ akvk = 0

be a non-trvial expression for 0 as a linear combination of the vi with as few non-zero coefficients
as possible. We can assume (after reordering if necessary) that a1 �= 0. Note that at least one other
ai is also non-zero (since v1 �= 0). In the following the first line is obtained by multiplying the
above expression by λ1, and the second by applying T . We have

a1λ1v1 + a2λ1v2 + · · ·+ akλ1vk = 0
a1λ1v1 + a2λ2v2 + · · ·+ akλkvk = 0

Subtracting the second equation here from the first gives

a2(λ1 − λ2)v2 + · · ·+ ak(λ1 − λk)vk = 0.

Since the expressions λ1 − λi are non-zero for i > 1, at least one of the coefficients in this new
expression is not zero, and this is a shorter expression for zero as a non-trivial linear combination
of the vi than the original one. This contradiction yields the conclusion that the vi are linearly
independent.

Notes Two consequences of this theorem:

1. The number of distinct eigenvalues of a linear transformation T : V → V cannot exceed the
dimension n of V (since a set of more than n vectors cannot be linearly independent). Note
that we can deduce this without having to think about the characteristic polynomial. The
same comment applies to any n× n matrix, since they represent linear transformations.

2. If V has dimension n and the linear transformation T : V → V has n distinct eigenvalues,
then V has a basis consisting of eigenvectors of T and T is diagonalizable.

We conclude this section by considering the “matrix” meaning of diagonalizability. Let A be
the matrix that represents the linear transformation T : V → V with respect to the basis B of V ,
and let B � be another basis of V . Let P be the matrix whose jth column is the B-coordinate vector
of the jth element of the basis B �. Then, using the definition of matrix-vector multiplication we
can observe that for any vector in V ,

[v]B = P[v]B� .

We refer to P as the change of basis matrix from B � to B. Note that P must be invertible since there
are n linearly independent vectors in its columnspace (namely the B-coordinate vectors of the
elements of the basis B �). Moreover, rearranging the above equation gives

[v]B� = P−1[v]B,

so the change of basis matrices from B � to B and from B to B � are inverses of each other. We now
note how the matrix of T with respect to B � depends on A and on P. To determine this we must
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ask, for a vector v ∈ V , by what matrix should we multiply [v]B� in order to obtain [T(v)] �B. We
have

[v]B = P[v]B�

=⇒ [T(v)]B = AP[v]B�

=⇒ [T(v)] �B = P−1APvB�

Thus the matrix of T with respect to B � is P−1AP.

Definition 5.3. Two matrices A and B in Mn(F) are said to be similar (over F) if there exists a nonsin-
gular matrix P ∈ Mn(F) for which

B = P−1AP.

Similarity is a very important relation on the set of square matrices of given size over a field. If
two matrices are similar it means that they represent the same linear transformation with respect
to different choices of basis. Similarity is an equivalence relation on Mn(F) (something for you to
check). A matrix A is said to diagonalizable if it is similar to a diagonal matrix, which means that
there exists a basis of Fn consisting of eigenvectors of A, or equivalently that the linear transfor-
mation from Fn to Fn defined as left multiplication by A is diagonalizable.
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