
8 Real symmetric matrices

A square matrix A is called symmetric if A = AT , i.e. Aij = Aji for all indices i and j. A real
symmetric matrix is a symmetric matrix whose entries are real. A complex Hermitian matrix B
is a square matrix with complex entries that satisfies B∗ = B, where B∗ denotes the Hermitian
transpose of B, obtained from B by transposing and then taking the complex conjugate of every
entry. The Hermitian transpose is also known as the Hermitian conjugate and/or the conjugate
transpose (basically any two of the words Hermitian, transpose, conjugate). Real symmetric matrices
are examples of complex Hermitian matrices obviously.

One of the very special properties of complex Hermitian matrices (and hence real symmetric
matrices) is that their eigenvalues are all real.

Theorem 8.1. The eigenvalues of a complex Hermitian matrix are all real.

Proof. Let A be a Hermitian matrix in Mn(C) and let λ be an eigenvalue of A with corresponding
eigenvector v. So λ ∈ C and v is a non-zero vector in Cn. Look at the product v∗Av. This is a
complex number.

v∗Av = v∗λv = λv∗v.

The expression v∗v is a positive real number, since it is the sum of the expressions v̄ivi over all
entries vi of v.

We have not yet used the fact that A∗ = A.
Now look at the Hermitian transpose of the matrix product v∗Av.

(v∗Av)∗ = v∗A∗(v∗)∗ = v∗Av.

This is saying that v∗Av is a complex number that is equal to its own Hermitian transpose, i.e.
equal to its own complex conjugate. This means exactly that v∗Av ∈ R.

We also know that v∗Av = λv∗v, and since v∗v is a non-zero real number, this means that
λ ∈ R.

The main theorem of this section is that every real symmetric matrix is not only diagonalizable
but orthogonally diagonalizable. Two vectors u and v in Rn are orthogonal to each other if u · v = 0
or equivalently if uTv = 0. This is sometimes written as u ⊥ v.

Recall that a matrix A in Mn(R) is called orthogonal if

• u · v = 0 if u and v are distinct columns of A (the columns of A are pairwise orthogonal to
each other), and

• u · u = 1 for each column u of A (each column of A is a vector of length 1 in Rn).

Another way to say this is that the columns of A form an orthonormal basis of Rn, which means a
basis consisting of mutually orthogonal unit vectors. Note that for any matrix B ∈ Mm×nR, BTB
is the n × n matrix whose entry in the (i, j) position is the scalar product of Columns i and j of
B. Putting this together with the above definition of an orthogonal matrix, it is saying that the
square matrix A ∈ Mn(R) is orthogonal if and only if

(ATA)ij =

�
1 if i = j
0 if i �= j

,

i.e. A ∈ Mn(R) is orthogonal if and only if ATA = In.

Definition 8.2. A matrix in Mn(R) is orthogonal if and only if its inverse is equal to its transpose.

We note that the set of orthogonal matrices in Mn(R) forms a group under multiplication,
called the orthogonal group and written On(R). The use of the term “orthogonal” for square
matrices differs from its use for vectors - a vector can’t just be orthogonal, it can be orthogonal to
another vector, but a matrix can be orthogonal by itself. An example of an orthogonal matrix in

M2(R) is
�

1/2 −
√

3/2√
3/2 1/2

�
.

The following is our main theorem of this section.
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Theorem 8.3. Let A be a symmetric matrix in Mn(R). Then there exists an orthogonal matrix P for
which PTAP is diagonal.

Note that this is saying that Rn has a basis consisting of eigenvectors of A that are all orthogo-
nal to each other, something that is true only for symmetric matrices. If we have a basis consisting
of orthogonal eigenvectors, we can normalize its elements so that our basis consists of unit vec-
tors as required. After we prove Theorem 8.3 we will deduce some consequences about positive
(semi)definiteness.

The following theorem is one of the two keys to the proof of Theorem 8.3, and it takes care of
the case where the eigenvalues of A are distinct.

Theorem 8.4. Let A be a real symmetric matrix. Let λ and µ be distinct eigenvalues of A, with respective
eigenvectors u and v in Rn. Then uTv = 0.

Note that uTv is just the ordinary scalar product of u and v (uT is just u written as a row). So
this theorem is saying that eigenvectors of a real symmetric matrix that correspond to different
eigenvalues are orthogonal to each other under the usual scalar product.

Proof. The matrix product uTAv is a real number (a 1 × 1 matrix). We can write

uTAv = uTµv = µuTv.

On the other hand, being a 1 × 1 matrix, uTAv is equal to its own transpose, so

uTAv = (uTAv)T = vTAT (uT )T = vTAu = vTλu = λvTu.

Now vTu = uTv since both are equal to the scalar product u · v (or because they are 1× 1 matrices
that are transposes of each other). So what we are saying is

µuTv = λuTv.

Since µ �= λ, it follows that uTv = 0.

From Theorem 8.4 and Lemma 5.2, it follows that if the symmetric matrix A ∈ Mn(R) has
distinct eigenvalues, then A = P−1AP (or PTAP) for some orthogonal matrix P. It remains to
consider symmetric matrices with repeated eigenvalues. We need a few observations relating to
the ordinary scalar product on Rn.

Definition 8.5. Let U be a subspace of Rn. Then the orthogonal complement of U, denoted U⊥, is
defined by

U⊥ = {v ∈ Rn : v · u = 0 ∀ u ∈ U}.

Notes

1. For example, if U = �e1, e2� in Rn, then U⊥ = �e3, . . . , en�.

2. It is easily checked that U⊥ is a subspace of Rn, not just a subset.

3. For any subspace U of Rn, U ∩ U⊥ = {0}, since element of U ∩ U⊥ must be orthogonal to
itself under the usual scalar product. However the scalar product of any non-zero vector in
Rn with itself is the sum of the squares of its entries, which is a positive real number.

4. Suppose that U has dimension k and let {u1, . . . ,uk} be a basis of u. Let AU be the k × n
matrix that has uT

1 , . . . ,uT
k as its k rows. Then AU has rank k since its rows are linearly

independent, and by definition U⊥ is just the right nullspace of AU. It follows from the
rank-nullity theorem that the dimension of U⊥ is n− k.
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5. Suppose that {u1, . . . ,uk} is a linearly independent set of vectors in Rn whose elements are
mutually orthogonal, so that ui · uj = 0 whenever i �= j. Let U = �u1, . . . ,uk�. If k < n, let
vk+1 ∈ U⊥ and note that {u1, . . . ,uk, vk+1} is a linearly independent set, since vk+1 �∈ U. If the
span of these k+1 elements is still not all of Rn, we can add an element of �u1, . . . ,uk, vk+1�⊥
to obtain a larger linearly independent set of mutually orthogonal vectors in Rn. Continuing
in this way we can extend {u1, . . . ,uk} to a basis of Rn consisting of mutually orthogonal
elements (we can normalize these if we wish to obtain an orthonormal basis). We have the
following useful fact: any linearly independent set of mutually orthogonal unit vectors in Rn can
be extended to an orthonormal basis of Rn.

The following lemma is the last ingredient needed for the proof of Theorem 8.3. This lemma
would not be true without the hypothesis that A is symmetric. When you are studying the proof,
make sure that you are attentive to how the symmetry of A is used. Note the statement that U is
A-invariant means that Au ∈ U whenever u ∈ U.

Lemma 8.6. Let A ∈ Mn(R) be symmetric and suppose that U is an A-invariant subspace of Rn. Then
U⊥ is also A-invariant.

Proof. Suppose that v ∈ U⊥. We need to show that Av ∈ U⊥ also, i.e. that uTAv = 0 for all u ∈ U.
So let u ∈ U and observe that

(uTAv)T = vTATu = vTAu.

Since Au ∈ U and v ∈ U⊥, we know that vTAu = 0. Thus uTAv = 0 also, for all u ∈ U. This
means exactly that Av ∈ U⊥, as required.

We are now ready to complete the proof of Theorem 8.3.

Proof. The proof proceeds by induction on n, but Lemma 8.6 is the key ingredient. The case n = 1
is trivial, since all 1 × 1 matrices are diagonal.

Let λ1, . . . , λk be the distinct eigenvalues of A, and let ui be an eigenvector (of length 1) corre-
sponding to λi. Note that k � 1 since A has at least one eigenvalue. If k = n, then by Theorem 8.4
and Lemma 5.2, there is nothing to do. So we assume that k < n and write U = �u1, . . . ,uk� ⊆ Rn.
Then U is A-invariant, since Aui is a scalar multiple of ui for each i. Moreover, the ui are mutually
orthogonal by Theorem 8.4, and dimU = k by Lemma 5.2.

Now as in item 5. in the notes above, we can extend {u1, . . . ,uk} to an orthonormal basis
{u1, . . . ,uk, vk+1, . . . , vn}, where U⊥ = {vk+1, . . . , vn}. Let Q be the orthogonal matrix whose
columns are u1, . . . ,uk, vk+1, . . . , vn. Then Q−1AQ is symmetric, since Q−1 = QT . Moreover,
because u1, . . . ,uk are eigenvectors of A and because U⊥ is A-invariant, the matrix QTAQ has
λ1, . . . , λk in the first k diagonal positions, has a symmetric (n−k)× (n−k) block A1 in the lower
right, and is otherwise full of zeros.

By the induction hypothesis, there exists an orthogonal matrix Q1 ∈ Mn−k(R) for which
Q−1

1 A1Q1 is diagonal. Let P ∈ Mn(R) be the orthogonal matrix that has Ik in the upper left
k× k block, Q1 in the lower right (n− k)× (n− k) block, and zeros elsewhere. Then

P−1Q−1AQP = (QP)−1A(QP)

is diagonal. Moreover QP is orthogonal since

(QP)−1 = P−1Q−1 = PTQT = (QP)T .

So A is orthogonally diagonalizable as required.

Two consequences of Theorem 8.3 are the following two characterizations of symmetric posi-
tive semidefinite matrices.

Theorem 8.7. Let A be a symmetric matrix in Mn(R). Then the following conditions are equivalent.

1. A is positive semidefinite.
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2. All eigenvalues of A are non-negative.

3. A = BBT for some B ∈ Mn(R).

We have seen some of the implications of this theorem already in Section 2.1, where we proved
that 1. =⇒ 2 and 3. =⇒ 1. We complete the proof by using Theorem 8.3 to show that 2. =⇒ 3.

Proof. First assume 2., that the eigenvalues λ1, . . . , λn of A are all non-negative. Then, by Theorem
8.3, the matrix D = diag(λ1, . . . , λn) satisfies

D = PTAP,

for some orthogonal matrix A ∈ Mn(R). Then A = PDPT . Let D1 be the diagonal matrix in
Mn(R) whose diagonal entries are the non-negative square roots in R of λ1, . . . , λn. Then D1 is
symmetric and D2

1 = D. We use this to deduce 3. as follows:

A = PDPT = P(D1)
2PT = (PD1)(D1P

T ) = (PD1)(D
T
1 P

T ) = (PD1)(PD1)
T .

Thus A satisfies 3., and we now have the implications 1. =⇒ 2., 2. =⇒ 3. and 3. =⇒ 1, which
means that any of the three conditions of Theorem 8.7 follows from any of the others.
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