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Chapter 1

Matrices and Graphs

1.1 The Adjacency Matrix

This section is an introduction to the basic themes of the course.

Definition 1.1.1. A simple undirected graph G = (V ,E) consists of a non-empty set V of vertices and a
set E of unordered pairs of distinct elements of V , called edges.

It is useful, and usual, to think a graph as a picture, in which the vertices are depicted with
dots and the edges are represented by lines between the relevant pairs of dots. For example

v1 v2

v3 v4

v5
v6

A directed graph is similar, except that edges are ordered instead of unordered pairs of vertices.
In pictures, the ordering is indicated by an arrow pointing from the initial vertex of the edge to
the terminal vertex. Other variants on the definition allow loops (edges from a vertex to itself)
or multiple edges between the same pair of vertices. Graph Theory is the mathematical study of
graphs and their variants. The subject has lots of applications to the analysis of situations in which
members or subgroups of some population are interacting with each other in different ways, for
example to the study of (e.g. electrical, traffic, social) networks.

Graphs can be infinite or finite, but in this course we will only consider finite graphs. An
undirected graph is connected if it is all in one piece. In general the connected pieces of a graph
are called components. Given a graph G, the numerical parameters describing G that you might
care about include things like

• the order (the number of vertices);

• the number of edges (anything from zero to
(
n
2

)
for a simple graph of order n);

• the number of connected components;

• the maximum (or minimum, or average) vertex degree - the degree of a vertex is the number
of edges incident with that vertex;

• if G is connected, its diameter - this is the distance between a pair of vertices that are furthest
apart in G;
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• the length of the longest cycle;

• the size of the largest clique;

• the size of the largest independent set;

• if G is connected, its vertex-connectivity - the minimum number of vertices that must be
deleted to disconect the graph;

• if G is connected, its edge-connectivity - the minimum number of edges that must be deleted
to disconnect the graph;

• the list goes on . . .

Thinking about graphs as pictures is definitely a very useful conceptual device, but it can be
a bit misleading too. If you are presented with a picture of a graph with 100 vertices and lots
of edges, and it is not obvious from the picture that the graph is disconnected, then deciding by
looking at the picture whether the graph is connected is not at all easy (for example). We need
some systematic ways of organising the information encoded in graphs so that we can interpret
it. Luckily the machinery of linear algebra turns out to be extremely useful.

Definition 1.1.2. Let G be a graph with vertex set {v1, . . . , vn}. The adjacency matrix of G is the n× n
matrix that has a 1 in the (i, j)-position if there is an edge from vi to vj in G and a 0 in the (i, j)-position
otherwise.

Examples

1. An undirected graph and its adjacency matrix.

v1 v2

v3 v4

v5
v6

A =


0 1 1 0 0 0
1 0 1 0 1 1
1 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
0 1 0 0 1 0


2. A directed graph and its adjacency matrix.

v3 v4

v5
v6

v1 v2

A =


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 1 0
1 0 0 0 0 0
0 0 1 1 0 1
1 0 0 0 0 0



Notes

1. The adjacency matrix is symmetric (i.e. equal to its transpose) if the graph is undirected.

2. The adjacency matrix has zeros on its main diagonal (unless the graph has loops).

3. A graph can easily be reconstructed from its adjacency matrix.
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4. The adjacency matrix of a graph G depends on a choice of ordering of the vertices of G (so
technically we should talk about the adjacency matrix with respect to a particular ordering).
The adjacency matrices A and A ′ of the same graph G with respect to different orderings
are related by permutation similarity, i.e.

A ′ = P−1AP,

where P is a permutation matrix - i.e. a (0, 1)-matrix with exactly one entry in each row and
column equal to 1. Note that a permutation matrix is orthogonal, its inverse is equal to its
transpose (more on that later).
Exercise: Prove the above assertion about the connection between adjacency matrices corre-
sponding to different orderings.

Given a graphG, its adjacency matrix is nothing more than a table that records where the edges
are in the graph. It happens to be a matrix, but its definition does not involve anything to do with
matrix algebra. So there is no good reason to expect that applying the usual considerations of
matrix algebra (matrix multiplication, diagonalization, eigenvalues, rank etc) to A would give us
anything meaningful in terms of the graph G. However it does. The first reason for that is the
following theorem, which describes what the entries of the positive integer powers of A tell us
about the graph G.

Theorem 1.1.3. Let A be the adjacency matrix of a simple graph G on vertices v1, v2, . . . , vn. Let k be a
positive integer. Then the entry in the (i, j)-position of the matrix Ak is the number of walks of length k
from vi to vj in G.

Proof. We use induction on k. The theorem is clearly true in the case k = 1, since the (i, j)-entry is
1 if there is a walk of length 1 from vi to vj (i.e. an edge), and 0 otherwise.

Assume that the theorem holds for all positive integers up to k− 1. Then

(Ak)ij =

n∑
r=1

(Ak−1)irArj.

We need to show that this is the number of walks of length k from vi to vj in G. By the induction
hypothesis, (Ak−1)ir is the number of walks of length k − 1 from vi to vr. For a vertex vr of G,
think of the number of walks of length k from vi to vj that have vr as their second-last vertex. If
vr is adjacent to vj, this is the number of walks of length k − 1 from vi to vr. If vr is not adjacent
to vj, it is zero. In either case it is (Ak−1)irArj, since Arj is 1 or 0 according as vr is adjacent to
vj or not. Thus the total number of walks of length k from vi to vj is the sum of the expressions
(Ak−1)irArj over all vertices vr of G, which is exactly (Ak)ij.

An immediate consequence of Theorem 1.1.3 is that the trace of the matrix A2 (i.e. the sum
of the diagonal entries) is the sum over all vertices vi of the number of walks of length 2 from vi
to vi. The number of walks of length 2 from a vertex to itself is just the number of edges at that
vertex, or the vertex degree. So

trace(A2) =
∑
v∈V

deg(v) = 2|E|.

It is a well known and very useful fact that in a graph without loops, the sum of the vertex
degrees is twice the number of edges - essentially this is the number of “ends of edges” - every
edge contributes twice to

∑
v∈V deg(v).

In A3, the entry in the (i, i)-position is the number of walks of length 3 from vi to itself. This
is twice the number of 3-cycles in G that include the vertex vi (why twice?). Thus, in calculating
the trace of A3, every 3-cycle (or triangle) in the graph, contributes six times - twice for each of its
three vertices. Thus

trace(A3) = 6× (number of triangles in G).
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Exercise: this interpretation of the trace of Ak as counting certain types of walks in G does not
work so well from k = 4 onwards - why is that?

A reason for focussing on the trace of powers of the adjacency matrix at this stage is that it
opens a door to the subject of spectral graph theory. Recall the following facts about the trace of a
n× nmatrix A (these will be justified in the next section).

1. Let the eigenvalues of A (i.e. the roots of the polynomial det(λIn − A)) be λ1, . . . , λn (not
necessarily distinct). Then trace(A) = λ1 + λ2 + · · · + λn. So the sum of the eigenvalues
is equal to the sum of the diagonal entries. The eigenvalues are generally not equal to the
diagonal entries, but they are for example if A is upper or lower triangular.

2. The eigenvalues of A2 are λ2
1, λ2

2, . . . , λ2
n, and the trace of A2 is the sum of the squares of the

eigenvalues of A.

3. In general, for a positive integer k,

trace(Ak) =
n∑
i=1

(λi)
k.

The central question of spectral graph theory asks what the spectrum (i.e. the list of eigenval-
ues) of the adjacency matrix A of a graph G tells us about the graph G itself. The observations
above tell us that the answer is not nothing. We know that if spec(A) = [λ1, . . . , λn], then

•
∑n
i=1 λ

2
i is twice the number of edges in G.

•
∑n
i=1 λ

3
i is six times the number of triangles in G.

This means that the adjacency spectrum of a graph G “knows” the number of edges in G and the
number of triangles in G (and obviously the number of vertices in G). To put that another way, if
two graphs of order n have the same spectrum, they must have the same number of edges and the
same number of triangles.

Definition 1.1.4. Two graphs G and H are called cospectral if their adjacency matrices have the same
spectrum.

Below is a pair of cospectral graphs that do not have the same number of cycles of length
4; G has 5 and H has 6. Each has 7 vertices, 12 edges and 6 triangles. Each has spectrum
[−2,−1,−1, 1, 1, 1 +

√
7, 1 −

√
7].

G H

Exercise: Why does it not follow from the reasoning for edges and triangles above that cospectral
graphs must have the same number of 4-cycles?

Something else that the adjacency spectrum does not “know” about a graph is its number
of components. The following is an example of a pair of cospectral graphs of order 5, one is
connected and one is not.

G H
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The adjacency matrices are

AG =


0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0

 , AH =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


It is easily observed that both AG and AH have rank 2, so each has zero occurring at least three
times as an eigenvalue. By considering

AHv =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0



a
b
c
d
e

 =


b+ c+ d+ e

a
a
a
a

 ,

we find that AHv = λv only if a = λb = λc = λd = λe and b+ c+ d+ e = λa. If λ 6= 0 this means
b = c = d = e and λa = λ2b = 4b. So λ2 = 4 and the possible values of λ are 2 and −2. Thus
spec(AH) = [0, 0, 0, 2,−2].

On the other hand AG also has rank 2 and so has zero occurring (at least) three times as an
eigenvalue. Because the first row of AG is a zero row, and the other row sums in AG are all equal
to 2, it follows that 2 is an eigenvalue of AG, with corresponding eigenvector having 0 in the first
position and 1 in the other four. Since the sum of the eigenvalues is the trace of AG which is zero,
the fifth eigenvalue must be −2. So spec(AG) = [0, 0, 0, 2,−2] = spec(AH).

We have shown that AH and AG are cospectral, but G has two connected components and H
has one. So the number of connected components in a graph is not determined by the adjacency
spectrum.

We finish off this section with a famous example of a theorem in graph theory that can be
proved using analysis of the spectrum of an adjacency matrix.

Theorem 1.1.5 (Erdös-Rényi-Sós, the Friendship Theorem (1966)). Let G be a finite graph on at least
three vertices, in which every pair of vertices has exactly one common neighbour (the “friendship property”).
Then there is a vertex in G that is adjacent to all the others.

Remarks

1. The theorem is called the Friendship Theorem because it can be expressed by the statement
that in a group of people in which every pair has exactly one mutual friend, there is a person
who is friends with everyone (the “politician”).

2. After we prove the theorem it is relatively easy to describe the finite graphs which have the
property - they are the “windmills”, also called “friendship graphs”. The windmill Wr has
2r+ 1 vertices and consists of r triangles, all sharing one vertex but otherwise disjoint.

W4

W1
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3. A graph is regular if all of its vertices have the same degree.

Proof. Our proof has two steps - the first is to show that a counterexample to the theorem would
have to be a regular graph, and the second is to consider what the hypotheses would say about
the square of the its adjacency matrix.

Let G be a graph satisfying the hypothesis of the theorem, and suppose that no vertex of G is
adjacent to all others. Let u and v be two non-adjacent vertices of G. Write k = deg(u) and let
x1, . . . , xk be the neighbours of u, where x1 is the unique common neighbour of u and v. For each
i in the range 1 to k, let y1 be the unique common neighbour of v and xi. The yi are all distinct,
since if two of them coincided then this vertex would have more than one common neighbour
with u. Thus v has degree at least k and degu 6 deg v. The same argument with the roles of u
and v reversed shows that deg v 6 degu, so we conclude that deg v = k, and that degu ′ = deg v ′

whenever u ′ and v ′ are non-adjacent vertices of G.
Now let w be any vertex of G, other than x1. Since u and v have only one common neighbour,

w is not adjacent to both u and v, so there is a vertex of degree k to which it is not adjacent. Thus
degw = k by the above argument. Now all vertices ofG have degree k except possibly x1. If there
is a vertex of G to which x1 is non-adjacent, then this vertex has degree k and hence so does x1.
The alternative is that x1 is adjacent to all other vertices of G which means that the conclusion of
the theorem is satisfied. We have shown that any counterexample to the statement of the theorem
would have to be a regular graph.

Now we assume that G is such a counterexample and that G is regular of degree k. Let n be
the order (number of vertices) of G. Let u be a vertex of G. Each of the other n − 1 vertices of G
is reachable from u by a unique path of length 2. The number of such paths emanating from u is
k(k − 1), since there are k choices for the first edge and then k − 1 for the second. It follows that
we can express n in terms of k:

k(k− 1) = n− 1 =⇒ n = k2 − k+ 1.

Now let A be the adjacency matrix of G and consider the matrix A2. Each entry on the diagonal
of A2 is k, the number of walks of length 2 from a vertex to itself. Each entry away from the main
diagonal is 1 - the number of walks of length 2 between two distinct vertices. Thus

A2 = (k− 1)I+ J,

where I is the identity matrix and J is the matrix whose entries are all equal to 1 (this is fairly
standard notation in combinatorics). We consider the eigenvalues of A2. These are the roots of
the characteristic polynomial

det(λI− (k− 1)I− J) = det ((λ− k+ 1)I− J) .

Thus the number λ1 is an eigenvalue of A2 if and only if λ1 − k+ 1 is an eigenvalue of J, and these
respective eigenvalues ofA2 and J occur with the same multiplicities. We can obtain the spectrum
ofA2 by adding k−1 to every element in the spectrum of J. The spectrum of J is easy to determine
directly - it has rank 1 and so has 0 occurring as an eigenvalue n − 1 times. Its row sums are all
equal to n and so it has n occurring (once) as an eigenvalue. Thus

spec(J) = [0, 0, . . . , 0,n] =⇒ spec(A2) = [k− 1,k− 1, . . . ,k− 1,n+ k− 1].

Note that n + k − 1 = k2, so spec(A) = [k − 1,k − 1, . . . ,k − 1,k2]. Now the eigenvalues of A are
square roots of the eigenvalues of A2. We know that k is an eigenvalue of A since every row sum
in A is equal to k; this occurs once. Every other eigenvalue of A is either

√
k− 1 or −

√
k− 1. Say

that
√
k− 1 occurs r times and −

√
k− 1 occurs s times, where r+ s = n− 1. Finally we make use

of the fact that trace(A) = 0, which means

k+ (r− s)
√

(k− 1) = 0.

Rearranging this equation gives k2 = (s − r)2(k − 1)2, which means that k − 1 divides k2. Since
k− 1 also divides k2 − 1, it follows that k− 1 = 1 which means that k = 2 and n = k2 − k+ 1 = 3.
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In this case G is the graph K3 (orW1) consisting of a single triangle. This is the only regular graph
satisfying the hypothesis of the theorem, and it also satisfies the conclusion (and it is a windmill).
By the first half of the proof, every non-regular graph that possesses the friendship propery has a
vertex adjacent to all others, so we have proved the theorem.

The Friendship Theorem is a famous example of the use of matrix and specifically spectral
techniques to solve a purely combinatorial problem. The proof here is essentially the original one
of Erdös, Rényi and Sós. There are several proofs in the literature, most of which involve con-
sideration of matrix spectra in some way. For many years there was interest in finding a “purely
combinatorial” proof. Some do exist now in the literature, see for example “The Friendship The-
orem” by Craig Huneke, in the February 2002 volume of the American Mathematical Monthly
(available on JSTOR). Another interesting feature of this theorem is that it is no longer true if the
condition that G is finite is dropped - there exist examples of infinite “friendship graphs” with no
politician.

1.2 Some matrix background

The goal of this section is to fill in some details about matrices that were used implicitly or explic-
itly in Section 1.1, in particular the assertions about the trace of a square matrix A and its positive
integer powers. For this we require the concept and meaning of similarity. Also in the background
are the Rank-Nullity Theorem and the concept of an eigenvector, along with its interpretation for
graphs.

First we revisit the process of matrix-vector multiplication. Let A ∈Mm×n(R), let v ∈ Rn and
let u in (Rm)T . Then

• Av is the column in Rm that is the linear combination of the columns of A with the entries
of v as coefficients.

• uA is the row in Rn that is the linear combination of the rows of A with the entries of u as
coefficients.

Definition 1.2.1. If A is square, A ∈Mn(R), then a non-zero column v is an eigenvector of A if Av is
a scalar multiple of v itself (the scalar that turns up here is the eigenvalue of A to which v corresponds.

In this context, multiplication on the left by A determines a function from Rn to Rn. An eigen-
vector of A corresponds to a one-dimensional subspace of Rn that is mapped into itself by A. In
Section 1.1 however, we were considering eigenvectors of the adjacency matrix of a graph. The
meaning of this has the following interpretation in graph theory.

Let G be a graph with adjacency matrix A. What is the meaning of an eigenvector of A in
terms of the graph G? For example

A(G) =



0 1 1 1 1 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 1 0 1 0
1 0 0 0 1 0 1
1 1 0 0 0 1 0


We saw in Section 1.1 that −2 is an eigenvalue of this A(G). A corresponding eigenvector is
u = (0, 1,−1, 1,−1, 1,−1).

In the context of graphs and adjacency matrices, we can think of a column vector u as a func-
tion on the vertex set, that assigns a number ui (the ith entry of u) to each vertex vi. We can think
of ui as the value of u at vertex vi. In this context the ith entry of the product A(G)ui is the sum
of those uj for which vj is a neighbour of vi, i.e.

(A(G)u)i =
∑
j:vj∼vi

uj.
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If u is an eigenvector of A(G) corresponding to the eigenvalue λ, it means that for every vertex v
of G, the sum of the values of u at the neighbours of v is the value at v itself multiplied by λ. In
the example above the function corresponding to u is

and it is easily checked for each vertex in this picture that the sum of the values labelling the
neighbouring vertices is −2 multiplied by the value at the vertex itself. Thus the vector u =
(0, 1,−1, 1,−1, 1,−1) is an eigenvector of this graph corresponding to the eigenvalue −2.

Definition 1.2.2. Let Rn denote the vector space of column vectors of length n over R. A linear transfor-
mation of Rn is a function T : Rn → Rn such that

• T(u+ v) = T(u) + T(v) ∀ u, v ∈ Rn;

• T(ku) = kT(u) ∀ u ∈ Rn, k ∈ R.

Let C = {c1, . . . , cn} be a basis of Rn. Then every element of Rn has a unique set of C-
coordinates, namely the coefficients of its expression as a linear combination of the elements of C.
Let T be a linear transformation of Rn.

Definition 1.2.3. The matrix of T with respect to C is the n × n matrix AC whose jth column has the
C-coordinates of bj as its entries.

If v ∈ Rn and vC is the column vector whose entries are the C-coordinates of v, then the matrix-
vector productACvC is the column vector whose entries are the C-coordinates of T(v). This follows
from the observation that this product is nothing but the linear combination of the columns of A
with the entries of vC as coefficients.

Example 1.2.4. Let T be the linear transformation of R2 with T(e1) =
(1

1

)
and T(e2) =

(
−2
4

)
(where

e1 =
(1

0

)
and e2 =

(0
1

)
are the elements of the standard basis). The matrix of T with respect to the standard

basis is

A =

(
1 −2
1 4

)
,

and if v =
(
a
b

)
is any element of R2, then

T(v) = T(ae1 + be2) = aT(e1) + bT(e2) = a

(
1
1

)
+ b

(
−2
4

)
=

(
1 −2
1 4

)(
a
b

)
.

Now let C be the basis of R2 consisting of c1 =
(
−2
1

)
and c2 =

( 1
−1

)
. Then

T(c1) =

(
1 −2
1 4

)(
−2

1

)
=

(
−4

2

)
= 2c1 =⇒ [T(c1)]C =

(
2
0

)
T(c2) =

(
1 −2
1 4

)(
1

−1

)
=

(
3

−3

)
= 3c2 =⇒ [T(c2)]C =

(
0
3

)

The matrix AC of T with respect to C is
(

2 0
0 3

)
.

Definition 1.2.5. Two matrices in Mn(R) are similar if they represent the same linear transformation
with respect to different bases of Rn.

Two similar matrices can look quite different. When dealing with linear transformations, a
general goal is to try to find a basis with respect to which the transformation is easy to describe.
The best you can hope for is that there might be a basis consisting entirely of eigenvectors for the
transformation, i.e. non-zero vectors v for which T(v) = λv for a real number λ (the corresponding
eigenvalue of T ). The matrix of T with respect to such a basis is diagonal; however such bases
might not exist.
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Definition 1.2.5 is the essential meaning of similarity, but it has a meaning in terms of matrix
algebra also, which is equivalent and often useful. To figure this out, let B = {b1, . . . ,bn} and
C = {c1, . . . , cn} be different bases of Rn, and let the matrix of T with respect to B be B.

Let P be the matrix whose jth column contains the B-coordinates of the vector cj. Then P is
invertible, and the B-coordinates of any vector v ∈ Rn are given by the matrix-vector product
PvC, where vC is the column consisting of the C-coordinates of v. Thus, for any vector v in Rn,
vB = PvC and equivalently vC = P−1vB.

Now the C-coordinates of T(v) may be found by first multiplying the column vector vC on the
left by P (to convert to B-coordinates), then multiplying on the left by the matrix B (this gives
the B-coordinates of T(v)), then multiplying on the left by P−1 (to get back to C-coordinates).
This means that the matrix of T with respect to B is P−1BP, prompting the following arithmetic
definition of similarity.

Definition 1.2.6. Two matrices B and C inMn(R) are similar to each other if

C = P−1BP,

for some invertible P ∈Mn(R).

Definitions 1.2.5 and 1.2.6 are entirely equivalent to each other and it useful to be able to think
of both of them together. The arithmetic version is particularly useful for proving some of the
shared properties of similar matrices.

To connect to the content of Section 1.1, we first show that similar matrices have the same
trace, which is a consequence of the fact that while the matrix products AB and BA are generally
different, they always have the same trace.

Lemma 1.2.7. Let A and B be matrices inMn(R). Then trace(AB) = trace(BA).

Proof. The trace of AB is the sum of the diagonal entries of AB. The entry in the (i, i) position of
AB is the scalar product of Row i of A with Column i of B. Thus

trace(AB) =

n∑
i=1

(AB)ii

=

n∑
i=1

n∑
k=1

AikBki

=

n∑
k=1

n∑
i=1

BkiAik

=

n∑
k=1

(BA)kk

= trace(BA).

Corollary 1.2.8. Suppose that A and B are similar matrices inMn(R). Then trace(A) = trace(B).

Proof. Since A and B are similar, B = P−1AP for some invertible P ∈Mn(R). Then

trace(B) = trace(P−1AP) = trace(APP−1) = trace(A),

by Lemma 1.2.7.

Our next goal is to show that the trace of a square matrix is the sum of its eigenvalues, some-
thing that we used in Section 1.1. We recall a few details about eigenvalues first.

1. The (possibly complex) number λ is an eigenvalue of the square matrix A ∈ Mn(R) if and
only if there exists a non-zero column vector v with Av = λv, which means (λI−A)v = 0.
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2. This means that some non-zero linear combination of the columns of λI−A is the zero vector,
which means exactly that these columns are linearly dependent, which occurs exactly if
det(λI − A) = 0. So the eigenvalues of A are the roots of the polynominal det(λI − A) (the
characteristic polynomial of A). So similar matrices have the same spectrum.

3. The determinant is a multiplicative function onMn(R), which means that det(AB) = det(A)det(B)
for A,B ∈ Mn(R) (this is the Cauchy-Binet formula, definitely not an obvious thing). If P
is an invertible matrix, then it follows from the Cauchy-Binet formula det(P)det(P−1) =
det In = 1 and that A and P−1AP have the same characteristic polynomial for all A ∈
Mn(R), i.e.

det(λI− P−1AP) = det(λP−1IP − P−1AP) = det(P−1(λI−A)P)

= det(P−1)det(λI−A)det(P) = det(λI−A).

4. Finally suppose that A is an upper triangular matrix (i.e. Aij = 0 whenever i > j, all entries
of A below the main diagonal are zero). Then the determinant of A is just the product of the
entries on the main diagonal, and the characteristic polynomial ofA is just the product over
i of (λ−Aii) - so the spectrum of A consists of the entries on the main diagonal.

For the next theorem we consider matrices over C, the reason being that the field C of complex
numbers is algebraically closed, which means that every polynomial with complex coefficients has
a full set of roots in C. Note that every matrix in Mn(R) is also in Mn(C). All eigenvalues of a
real matrix are complex, they are not necessarily all real.

Theorem 1.2.9. Let A ∈Mn(C). Then A is similar inMn(C) to an upper triangular matrix inMn(C).

Proof. By induction on n. The case n = 1 is clear, since every 1×1 matrix is upper triangular. Let T
be the linear transformation of Cn determined by T(v) = Av, for v ∈ Cn. Let λ1 be an eigenvalue
ofA in C with corresponding eigenvector v1. Expand {v1} to a basis {v1, v2, . . . , vn} of Cn. Then the
matrix A1 of T with respect to this basis has λ1 in its top left entry and zeros otherwise in its first
column, write this matrix as

A1 =


λ1 ∗ . . . ∗
0
... A ′

0

 ,

whereA ′ ∈Mn−1(C). By the induction hypothesis, there exists an invertible matrixQ ∈Mn−1(C)
for which T ′ = Q−1AQ is upper triangular. Write

P =


1 0 . . . 0
0
... Q

0

 .

Then

P−1 =


1 0 . . . 0
0
... Q−1

0

 ,
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and

P−1A1P =


1 0 . . . 0
0
... Q−1

0



λ1 ∗ . . . ∗
0
... A ′

0




1 0 . . . 0
0
... Q

0



=


λ1 � . . . �
0
... Q−1A ′Q
0

 =


λ1 � . . . �
0
... T ′

0

 .

Thus A1, and hence A, is similar to an upper triangular matrix.

Finally we are in a position to prove the following statement.

Theorem 1.2.10. Let A ∈Mn(R), and let spec(A) = [λ1, . . . , λn] (a multiset of complex numbers). For
every positive integer k,

trace(Ak) =
n∑
i=1

λki .

Proof. Let T be an upper triangular matrix similar to A in Mn(C). Since A and T have the same
spectrum, the diagonal entries of T are λ1, . . . , λn (in some order). Since A and T have the same
trace we have trace(A) =

∑
λi.

Since A = P−1TP for some invertible P ∈Mn(C) we have

Ak = (PP−1TP)(P−1TP) . . . (P−1TP) = P−1TkP,

so Ak is similar to Tk. Using the mechanism of matrix multiplication and the fact that T is upper
triangular, it is straightforward to see that the diagonal entries of TK are the kth powers of the
corresponding diagonal entries of T . Thus

trace(Ak) = trace(Tk) =
k∑
i=1

λki .
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Chapter 2

Real Symmetric Matrices

2.1 Special properties of real symmetric matrices

A matrix A ∈ Mn(C) (or Mn(R)) is diagonalizable if it is similar to a diagonal matrix. If this
happens, it means that there is a basis of Cn with respect to which the linear transformation of Cn
defined by left multiplication by A has a diagonal matrix. Every element of such a basis is simply
multiplied by a scalar when it is multiplied by A, which means exactly that the basis consists of
eigenvectors of A.

Lemma 2.1.1. A matrix A ∈ Mn(C) is diagonalizable if and only if Cn possesses a basis consisting of
eigenvectors of A.

Not all matrices are diagonalizable. For example A =

(
1 1
0 1

)
is not. To see this note that 1

(occurring twice) is the only eigenvalue of A, but that all eigenvectors of A are scalar multiples of(1
0

)
, so C2 (or R2) does not contain a basis consisting of eigenvectors of A, and A is not similar to

a diagonal matrix.
We note that a matrix can fail to be diagonalizable only if it has repeated eigenvalues, as the

following lemma shows.

Lemma 2.1.2. Let A ∈ Mn(R) and suppose that A has distinct eigenvalues λ1, . . . , λn in C. Then A is
diagonalizable.

Proof. Let vi be an eigenvector of A corresponding to λi. We will show that S = {v1, . . . , vn} is a
linearly independent set. Since v1 is not the zero vector, we know that {v1} is linearly independent.
If S is linearly dependent, let k be the least for which {v1, . . . , vk} is linearly dependent. This means
that {v1, . . . , vk−1} is a linearly independent set and

vk = a1v1 + · · ·+ ak−1vk−1

for some ai ∈ C, not all zero. Multiplying this equation on the left separately by A and by λk
gives

λkvk = a1λ1v1 + a2λ2v2 + ak−1λk−1vk−1

a1λkv1 + a2λkv2 + ak−1λkvk−1

=⇒ 0 = a1(λ1 − λk)v1 + a2(λ2 − λk) + · · ·+ ak(λk−1 − λk)vk−1.

Since the complex numbers λi − λk are non-zero for i = 1, . . . ,k − 1 and at least one of these ai
is non-zero, the above is an expression for the zero vector as a nontrivial linear combination of
v1, . . . , vk−1, contrary to the choice of k. We conclude that S is linearly independent and hence that
it is a basis of Cn.

13



Definition 2.1.3. A matrix A ∈Mn(R) is symmetric if it is equal to its transpose, i.e. if Aij = Aji for
all i and j.

Symmetric matrices arise naturally in various contexts, including as adjacency matrices of
undirected graphs. Fortunately they have lots of nice properties. To explore some of these we
need a slightly more general concept, that of a complex Hermitian matrix.

Definition 2.1.4. Let A ∈ Mn(C). The Hermitian transpose, or conjugate transpose of A is the
matrix A∗ obtained by taking the transpose of A and then taking the complex conjugate of each entry. The
matrix A is said to be Hermitian if A = A∗.

Notes

1. Example: If A =

(
2 + i 4 − i

3 3 − i

)
, then A∗ =

(
2 − i 3
4 + i 3 + i

)
2. The Hermitian transpose of A is equal to its (ordinary) transpose if and only if A ∈Mn(R).

In some contexts the Hermitian transpose is the appropriate analogue in C of the concept of
transpose of a real matrix.

3. If A ∈ Mn(C), then the trace of the product A∗A is the sum of all the entries of A, each
multiplied by its own complex conjugate (check this). This is a non-negative real number
and it is zero only if A = 0. In particular, if A ∈ Mn(R), then trace(ATA) is the sum of the
squares of all the entries of A.

4. Suppose that A and B are two matrices for which the product AB exists. Then (AB)T =
BTAT and (AB)∗ = B∗A∗ (it is routine but worthwile to prove these statements). In particu-
lar, if A is any matrix at all, then

(ATA)T = AT (AT )T = ATA, and (A∗A)∗ = A∗(A∗)∗ = A∗A,

so ATA and A∗A are respectively symmetric and Hermitian (so are AAT and AA∗).

The following theorem is the start of the story of what makes real symmetric matrices so
special.

Theorem 2.1.5. The eigenvalues of a real symmetric matrix are all real.

Proof. We will prove the stronger statement that the eigenvalues of a complex Hermitian matrix
are all real. Let A be a Hermitian matrix in Mn(C) and let λ be an eigenvalue of A with corre-
sponding eigenvector v. So λ ∈ C and v is a non-zero vector in Cn. Look at the product v∗Av.
This is a complex number.

v∗Av = v∗λv = λv∗v.

The expression v∗v is a positive real number, since it is the sum of the expressions v̄ivi over all
entries vi of v.

We have not yet used the fact that A∗ = A.
Now look at the Hermitian transpose of the matrix product v∗Av.

(v∗Av)∗ = v∗A∗(v∗)∗ = v∗Av.

This is saying that v∗Av is a complex number that is equal to its own Hermitian transpose, i.e.
equal to its own complex conjugate. This means exactly that v∗Av ∈ R.

We also know that v∗Av = λv∗v, and since v∗v is a non-zero real number, this means that
λ ∈ R.

So the eigenvalues of a real symmetric matrix are real numbers. This means in particular that
the eigenvalues of the adjacency matrix of an undirected graph are real numbers, they can be
arranged in order and we can ask questions about (for example) the greatest eigenvalue, the least
eigenvalue, etc.
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Another concept that is often mentioned in connection with real symmetric matrices is that
of positive definiteness. We mentioned above that if A ∈ Mm×n(R), then ATA is a symmetric
matrix. However not every symmetric matrix has the form ATA, since for example the entries on
the main diagonal of ATA do not. It turns out that those symmetric matrices that have the form
ATA (even for a non-square A) can be characterized in another way.

Definition 2.1.6. LetA be a symmetric matrix inMn(R). ThenA is called positive semidefinite (PSD)
if vTAv > 0 for all v ∈ Rn. In addition, if vTAv is strictly positive whenever v 6= 0, then A is called
positive definite (PD).

Notes

1. The identity matrix In is the classical example of a positive definite symmetric matrix, since
for any v ∈ Rn, vT Inv = vTv = v · v > 0, and v · v = 0 only if v is the zero vector.

2. The matrix
(

1 2
2 1

)
is an example of a matrix that is not positive semidefinite, since

(
−1 1

)( 1 2
2 1

)(
−1

1

)
= −2.

So positive (semi)definite is not the same thing as positive - a symmetric matrix can have all
of its entries positive and still fail to be positive (semi)definite.

3. A symmetric matrix can have negative entries and still be positive definite, for example the

matrix A =

(
1 −1

−1 2

)
is SPD (symmetric positive definite). To see this observe that for

real numbers a and b we have(
a b

)( 1 −1
−1 2

)(
a
b

)
= a2 − ab− ab+ 2b2 = (a− b)2 + b2.

Since (a− b)2 + b2 cannot be negative and is zero only if both a and b are equal to zero, the
matrix A is positive definite.

The importance of the concept of positive definiteness is not really obvious at first glance, it
takes a little bit of discussion. We will defer this discussion for now, and mention two observations
related to positive (semi)definiteness that have a connection to spectral graph theory.

Lemma 2.1.7. The eigenvalues of a real symmetric positive semidefinite matrix are non-negative (positive
if positive definite).

Proof. Let λ be an eigenvalue of the real symmetric positive semidefinite matrix A, and let v ∈ Rn
be a corresponding eigenvector. Then

0 6 vTAv = vTλv = λvTv.

Thus λ is nonnegative since vTv is a positive real number.

Lemma 2.1.8. Let B ∈ Mn×m(R) for some positive integers m and n. Then the symmetric matrix
A = BBT inMn(R) is positive semidefinite.

Proof. Let u ∈ Rn. Then

uTAu = uTBBTu = (uTB)(BTu) = (BTu)T (BTu) = (BTu) · (BTu) > 0,

so A is positive semidefinite.

The next section will contain a more detailed discussion of positive (semi)definiteness, includ-
ing the converses of the two statements above. First we digress to look at an application of what
we know so far to spectral graph theory.
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Definition 2.1.9. Let G be a graph. The line graph of G, denoted by L(G), has a vertex for every edge
of G, and two vertices of L(G) are adjacent if and only if their corresponding edges in G share an incident
vertex.

Example 2.1.10. K4 (left) and its line graph (right).

Choose an edge of K4. Since each of its incident vertices has degree 3, there are four other edges
with which it shares a vertex. So the vertex that represents it in L(K4) has degree 4. In general, if
a graph G is regular of degree k, then L(G) will be regular of degree 2k − 2. For any graph G, a
vertex of degree d in G corresponds to a copy of the complete graph Kd within L(G).

Not every graph can be a line graph. For example, a vertex of degree 3 in a line graph L(G)
must have the property that at least two of its neighbours are adjacent to each other, because it
corresponds to an edge e of the graph G that shares a vertex with three other edges. At least two
of these three must be incident with the same vertex of e. Thus (for example) L(G) can be a tree
or forest only if L(G) has no vertex of degree exceeding 2, which means that G is a collection of
disjoint paths (in this case L(G) is also a collection of disjoint paths, of lengths one less than the
paths of G itself). The cycle Cn is its own line graph. The line graph of the path Pn is Pn−1. The
line graph of the star on n vertices (which has one vertex of degree n− 1 and n− 1 of degree 1) is
the complete graph Kn.

Line graphs all share the following spectral property, which is remarkable easy to prove using
what we already know about positive semidefinite matrices.

Theorem 2.1.11. Let L(G) be the line graph of a graph G, and let A(L(G)) be the adjacency matrix of
L(G). Then every eigenvalue of L(G) is at least equal to −2.

To prove Theorem 2.1.14 we need one more device that links matrices to graphs.

Definition 2.1.12. Let G be a graph with n vertices and m edges. The incidence matrix of G, denoted
B(G), is the m × n (0, 1)-matrix with rows indexed by the edges of G and columns by the vertices of G,
that has a 1 in the (i, j)-position if and only if the edge labelling Row i is incident with the vertex labelling
Column j.

The incidence matrix depends on a choice of ordering of both the vertices and the edges obvi-
ously.

Example 2.1.13. A graph and its incidence matrix.

a

b

c

d

e

f

1

2

3

4

5

6

7

8



1 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 0 1 1



Each row of an incidence matrix has two 1s, and the number of 1s in a column is the degree of
the corresponding vertex.
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Now suppose that B is the incidence matrix of a graph G, and consider the positive semidefi-
nite matrices BBT and BTB.

The rows and columns of BBT are indexed by the edges of G. The entry in the (i, j) position of
BBT is the scalar product of Rows i and j of B, each of which has exactly two entries equal to 1. If
i = j then the entry in the (i, i) position of BBT is 2. If i 6= j, then Rows i and j of B are different
since they represent different edges ei and ej respectively of G. In this case (BBT )ij is equal to 1
if the edges ei and ej have a vertex in common, and 0 otherwise. Thus an off-diagonal entries of
BBT is 1 or 0 according as the edges of G labelling its row and column share an incident vertex or
not. The diagonal entries are all 2. Thus BBT − 2I is exactly the adjacency matrix of the line graph
of G, or

BBT = 2I+A(L(G)).

Theorem 2.1.14. Let L(G) be the line graph of a graphG, and let λ be the least eigenvalue of the adjacency
matrix of L(G). The λ > −2.

Proof. From the above description of BBT we know that 2I + A(L(G)) is a positive semidefinite
matrix and so its eigenvalues are all non-negative. Moreover the spectrum of 2I + A(L(G)) are
obtained by adding 2 to each item in the spectrum of A(L(G)), so λ+ 2 > 0 =⇒ λ > −2.

It is not true unfortunately that a graph must be a line graph if all eigenvalues of its adjacency
matrix are at least −2.

Now we turn to the matrix BTB. The rows and columns of this matrix are labelled by the
vertices of G and the entry in the (i, j) positive is the scalar product of Column i and Column j
of B. If i = j, this is the degree of Vertex i. If i 6= j, then Column i and Column j have a 1 in the
same position if and only if Vertex i and Vertexj belong to the same edge. This happens in exactly
one position if the vertices i and j are adjacent in G, and in no position if they are non-adjacent.
Thus the entry in the off-diagonal position (i, j) of BTB is 1 if Vertices i and j are adjacent inG and
0 otherwise. This means that away from the main diagonal, BTB coincides with the adjacency
matrix of G. Putting all of this together gives

BTB = ∆+A(G),

where A(G) is the adjacency matrix of G and ∆ is the diagonal matrix whose entry in the (i, i)-
position is the degree of vertex vi. We have shown the the matrix∆+A(G) is positive semidefinite
for every graph G. In the special case where G is regular of degree k, this shows that every
eigenvalue of G is at least −k.
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2.2 Diagonalizability of symmetric matrices

The main theorem of this section is that every real symmetric matrix is not only diagonalizable
but orthogonally diagonalizable. Two vectors u and v in Rn are orthogonal to each other if u · v = 0
or equivalently if uTv = 0. This is sometimes written as u ⊥ v. A matrix A in Mn(R) is called
orthogonal if

• u · v = 0 if u and v are distinct columns of A (the columns of A are pairwise orthogonal to
each other), and

• u · u = 1 for each column u of A (each column of A is a vector of length 1 in Rn).

Another way to say this is that the columns of A form an orthonormal basis of Rn, which means a
basis consisting of mutually orthogonal unit vectors. Note that for any matrix B ∈Mm×nR, BTB
is the n × n matrix whose entry in the (i, j) position is the scalar product of Columns i and j of
B. Putting this together with the above definition of an orthogonal matrix, it is saying that the
square matrix A ∈Mn(R) is orthogonal if and only if

(ATA)ij =

{
1 if i = j
0 if i 6= j ,

i.e. A ∈Mn(R) is orthogonal if and only if ATA = In.

Definition 2.2.1. A matrix inMn(R) is orthogonal if and only if its inverse is equal to its transpose.

We note that the set of orthogonal matrices in Mn(R) forms a group under multiplication,
called the orthogonal group and written On(R). The use of the term “orthogonal” for square
matrices differs from its use for vectors - a vector can’t just be orthogonal, it can be orthogonal to
another vector, but a matrix can be orthogonal by itself. An example of an orthogonal matrix in

M2(R) is
(

1/2 −
√

3/2√
3/2 1/2

)
.

The following is our main theorem of this section.

Theorem 2.2.2. Let A be a symmetric matrix in Mn(R). Then there exists an orthogonal matrix P for
which PTAP is diagonal.

Note that this is saying that Rn has a basis consisting of eigenvectors of A that are all orthogo-
nal to each other, something that is true only for symmetric matrices. If we have a basis consisting
of orthogonal eigenvectors, we can normalize its elements so that our basis consists of unit vec-
tors as required. After we prove Theorem 2.2.2 we will deduce some consequences about positive
(semi)definiteness and then look at some applications to graph spectra in the next section.

The following theorem is one of the two keys to the proof of Theorem 2.2.2, and it takes care
of the case where the eigenvalues of A are distinct.

Theorem 2.2.3. LetA be a real symmetric matrix. Let λ and µ be distinct eigenvalues ofA, with respective
eigenvectors u and v in Rn. Then uTv = 0.

Note that uTv is just the ordinary scalar product of u and v (uT is just u written as a row). So
this theorem is saying that eigenvectors of a real symmetric matrix that correspond to different
eigenvalues are orthogonal to each other under the usual scalar product.

Proof. The matrix product uTAv is a real number (a 1× 1 matrix). We can write

uTAv = uTµv = µuTv.

On the other hand, being a 1× 1 matrix, uTAv is equal to its own transpose, so

uTAv = (uTAv)T = vTAT (uT )T = vTAu = vTλu = λvTu.
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Now vTu = uTv since both are equal to the scalar product u · v (or because they are 1× 1 matrices
that are transposes of each other). So what we are saying is

µuTv = λuTv.

Since µ 6= λ, it follows that uTv = 0.

From Theorem 2.2.3 and Lemma 2.1.2, it follows that if the symmetric matrix A ∈Mn(R) has
distinct eigenvalues, then A = P−1AP (or PTAP) for some orthogonal matrix P. It remains to
consider symmetric matrices with repeated eigenvalues. We need a few observations relating to
the ordinary scalar product on Rn.

Definition 2.2.4. Let U be a subspace of Rn. Then the orthogonal complement of U, denoted U⊥, is
defined by

U⊥ = {v ∈ Rn : v · u = 0 ∀ u ∈ U}.

Notes

1. For example, if U = 〈e1, e2〉 in Rn, then U⊥ = 〈e3, . . . , en〉.

2. It is easily checked that U⊥ is a subspace of Rn, not just a subset.

3. For any subspace U of Rn, U ∩ U⊥ = {0}, since element of U ∩ U⊥ must be orthogonal to
itself under the usual scalar product. However the scalar product of any non-zero vector in
Rn with itself is the sum of the squares of its entries, which is a positive real number.

4. Suppose that U has dimension k and let {u1, . . . ,uk} be a basis of u. Let AU be the k × n
matrix that has uT1 , . . . ,uTk as its k rows. Then AU has rank k since its rows are linearly
independent, and by definition U⊥ is just the right nullspace of AU. It follows from the
rank-nullity theorem that the dimension of U⊥ is n− k.

5. Suppose that {u1, . . . ,uk} is a linearly independent set of vectors in Rn whose elements are
mutually orthogonal, so that ui · uj = 0 whenever i 6= j. Let U = 〈u1, . . . ,uk〉. If k < n, let
vk+1 ∈ U⊥ and note that {u1, . . . ,uk, vk+1} is a linearly independent set, since vk+1 6∈ U. If the
span of these k+1 elements is still not all of Rn, we can add an element of 〈u1, . . . ,uk, vk+1〉⊥
to obtain a larger linearly independent set of mutually orthogonal vectors in Rn. Continuing
in this way we can extend {u1, . . . ,uk} to a basis of Rn consisting of mutually orthogonal
elements (we can normalize these if we wish to obtain an orthonormal basis). We have the
following useful fact: any linearly independent set of mutually orthogonal unit vectors in Rn can
be extended to an orthonormal basis of Rn.

The following lemma is the last ingredient needed for the proof of Theorem 2.2.2. This lemma
would not be true without the hypothesis that A is symmetric. When you are studying the proof,
make sure that you are attentive to how the symmetry of A is used. Note the statement that U is
A-invariant means that Au ∈ Uwhenever u ∈ U.

Lemma 2.2.5. LetA ∈Mn(R) be symmetric and suppose thatU is an A-invariant subspace of Rn. Then
U⊥ is also A-invariant.

Proof. Suppose that v ∈ U⊥. We need to show that Av ∈ U⊥ also, i.e. that uTAv = 0 for all u ∈ U.
So let u ∈ U and observe that

(uTAv)T = vTATu = vTAu.

Since Au ∈ U and v ∈ U⊥, we know that vTAu = 0. Thus uTAv = 0 also, for all u ∈ U. This
means exactly that Av ∈ U⊥, as required.

We are now ready to complete the proof of Theorem 2.2.2.
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Proof. The proof proceeds by induction on n, but Lemma 2.2.5 is the key ingredient. The case
n = 1 is trivial, since all 1× 1 matrices are diagonal.

Let λ1, . . . , λk be the distinct eigenvalues of A, and let ui be an eigenvector (of length 1) cor-
responding to λi. Note that k > 1 since A has at least one eigenvalue. If k = n, then by
Theorem 2.2.3 and Lemma 2.1.2, there is nothing to do. So we assume that k < n and write
U = 〈u1, . . . ,uk〉 ⊆ Rn. Then U is A-invariant, since Aui is a scalar multiple of ui for each i.
Moreover, the ui are mutually orthogonal by Theorem 2.2.3, and dimU = k by Lemma 2.1.2.

Now as in item 5. in the notes above, we can extend {u1, . . . ,uk} to an orthonormal basis
{u1, . . . ,uk, vk+1, . . . , vn}, where U⊥ = {vk+1, . . . , vn}. Let Q be the orthogonal matrix whose
columns are u1, . . . ,uk, vk+1, . . . , vn. Then Q−1AQ is symmetric, since Q−1 = QT . Moreover,
because u1, . . . ,uk are eigenvectors of A and because U⊥ is A-invariant, the matrix QTAQ has
λ1, . . . , λk in the first k diagonal positions, has a symmetric (n−k)× (n−k) block A1 in the lower
right, and is otherwise full of zeros.

By the induction hypothesis, there exists an orthogonal matrix Q1 ∈ Mn−k(R) for which
Q−1

1 A1Q1 is diagonal. Let P ∈ Mn(R) be the orthogonal matrix that has Ik in the upper left
k× k block, Q1 in the lower right (n− k)× (n− k) block, and zeros elsewhere. Then

P−1Q−1AQP = (QP)−1A(QP)

is diagonal. Moreover QP is orthogonal since

(QP)−1 = P−1Q−1 = PTQT = (QP)T .

So A is orthogonally diagonalizable as required.

Two consequences of Theorem 2.2.2 are the following two characterizations of symmetric pos-
itive semidefinite matrices.

Theorem 2.2.6. Let A be a symmetric matrix inMn(R). Then the following conditions are equivalent.

1. A is positive semidefinite.

2. All eigenvalues of A are non-negative.

3. A = BBT for some B ∈Mn(R).

We have seen some of the implications of this theorem already in Section 2.1, where we proved
that 1. =⇒ 2 and 3. =⇒ 1. We complete the proof by using Theorem 2.2.2 to show that 2. =⇒ 3.

Proof. First assume 2., that the eigenvalues λ1, . . . , λn ofA are all non-negative. Then, by Theorem
2.2.2, the matrix D = diag(λ1, . . . , λn) satisfies

D = PTAP,

for some orthogonal matrix A ∈ Mn(R). Then A = PDPT . Let D1 be the diagonal matrix in
Mn(R) whose diagonal entries are the non-negative square roots in R of λ1, . . . , λn. Then D1 is
symmetric and D2

1 = D. We use this to deduce 3. as follows:

A = PDPT = P(D1)
2PT = (PD1)(D1P

T ) = (PD1)(D
T
1 P
T ) = (PD1)(PD1)

T .

Thus A satisfies 3., and we now have the implications 1. =⇒ 2., 2. =⇒ 3. and 3. =⇒ 1, which
means that any of the three conditions of Theorem 2.2.6 follows from any of the others.

We will look at some consequences for graphs in the next section.

20



2.3 Connections to the adjacency spectrum

In this section we consider some of the consequences for spectral graph theory of the properties
of symmetric and positive semidefinite real matrices that were established in Section 2.2. First
we consider the connection between the adjacency spectrum of a regular graph and that of its
complement.

Recall that a graph is regular if all of its vertices have the same degree. Also, the complement
of a graph G is the graph G that has the same vertex set as G and whose edges are precisely the
non-edges of G. The adjacency matrix of G has 1s precisely in the off-diagonal positions where
the adjacency matrix of G has zeros. So the adjacency matrices of any graph and its complement
are related by the equation

A(G) +A(G) + In = J,

where as usual J denotes the matrix in which every entry is 1.
If G is regular of degree k, then G is regular of degree n− 1 − k, where n is the order (number

of vertices) of G.
Example

Note that if G is a k-regular graph, then k is an eigenvalue of A(G), corresponding the eigen-
vector whose entries are all 1. This follows from the fact that the sum of the entries in each row of
A(G) is k.

Theorem 2.3.1. Let G be a k-regular graph of order n, and let the spectrum of A(G) be [k, θ2, . . . , θn].
Then the spectrum of A(G) is [n − k − 1,−1 − θ2, . . . ,−1 − θn]. Furthermore A(G) and A(G) have the
same eigenvectors.

Outline of proof : By Theorem 2.2.2 we may choose a basis {v1, . . . , vn} consisting of Rn of mutually
orthogonal eigenvectors of A(G), where v1 is the all-1 vector (corresponding to the eigenvalue k)
and vi corresponds to θi for i > 2. Note that vi ⊥ v1, in particular this means that Jvi = 0 for
i > 2. Now consider the product

A(G)vi = (J−A(G) − In)vi.

Note: this is Problem 9 in Problem Sheet 1.
Now we consider how the adjacency spectrum of a graph G relates to the spectra of some of

some of its subgraphs. We recall some definitions.

Definition 2.3.2. Let G be a graph with vertex set V and edge set E. A subgraph of G is a graph whose
vertex set is a subset of V and whose edge set is a subset of E. An induced subgraph of G is a subgraph H
whose edge set consists of all edges of G that involve two vertices of H.

Example A graph G, a (non-induced) subgraph H1 and an induced subgraph H2.

H1 H2G
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If H is an induced subgraph of a graph G, then the adjacency matrix of H consists of the entries
of the rows and columns of A(G) that label those vertices that belong to H. These form a principal
submatrix of A(G). In general a principal submatrix of a sqaure matrix M is a square submatrix
whose main diagonal coincides with that of M. In the case of adjacency matrices, principal sub-
matrices correspond to induced subgraphs. If H ′ is any subgraph of G, then the adjacency matrix
of H is obtained from the relevant principal submatrix of A(G) by possible replacing some sym-
metrically opposite pairs of 1s with zeros. The adjacency matrices of the graphs G, H1 and H2
(corresponding to a vertex labelling that starts in the top right and proceeds anticlockwise) are
given below.

A(G) =



0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0


, A(H1) =


0 1 0 0 0 0
1 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0

 , A(H2) =


0 1 0 0 1 0
1 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0
1 0 0 1 0 1
0 1 0 0 1 0

 .

The following lemma notes a useful property of positive semidefinite matrices.

Lemma 2.3.3. Suppose that A is a symmetric PSD matrix. Then every principal submatrix of A is PSD.
(If A is positive definite than every principal submatrix of A is positive definite).

Proof. LetA1 be the principal submatrix ofA consisting determined by Rows and Columns i1, i2, . . . , ik.
Let V be the subspace of Rn consisting of all those column vectors that have zeros outside of po-
sitions i1, . . . , ik. Then for every v ∈ Vi, let v1 denote the vector in Rk whose entries are the entries
from positions i1, . . . , ik of V . Then for v ∈ V we have

vTAv = vT1A1v1.

Since vTAv > 0 for all v ∈ V , it follows that vT1A1v1 > 0 for all v1 ∈ Rk, hence that A1 is positive
semidefinite as required.

Note that a particular consequence of Lemma 2.3.3 is that the diagonal entries of a symmetric
PSD matrix must be non-negative (positive if the matrix is PD).

For any simple undirected graph G, the eigenvalues of A(G) are real numbers. We write
λmax(G) for the maximum eigenvalue of G, and λmin(G) for the minimum eigenvalue of G. The
following theorem is related to Lemma 2.3.3.

Theorem 2.3.4. Let H be an induced subgraph of order k of a graph G of order n. Then

λmin(G) 6 λmin(H) 6 λmax(H) 6 λmax(G).

Proof. Write A for the adjacency matrix of G and θ and µ respectively for the maximum and
minimum eigenvalues of A. Suppose that σ is an eigenvalue of the matrix θIn −A. Then

(θI−A)v = σv =⇒ Av = (θ− σ)v

for some non-zero v ∈ Rn. So the eigenvalues of θIn − A are obtained by subtracting the eigen-
values ofA from θ, hence they are all non-negative and θIn−A is positive semidefinite. It follows
that θIk − A(H) is positive semidefinite, since it is a principal submatrix of θIn − A. This means
that θ− ρ > 0 for every eigenvalue ρ of A(H), so λmax(H) 6 θ.

On the other hand every eigenvalue of A − µI is of the form σ − µ for some eigenvalue σ
of A, and is therefore non-negative. Thus A − µIn is a positive semidefinite matrix and so is its
principal submatrix A(H) − µIk, which means that ρ− µ > 0 for every eigenvalue ρ of A(H), and
in particular λmin(A(H)) > µ.
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In fact it is true for any subgraph H of G that

λmin(G) 6 λmin(H) 6 λmax(H) 6 λmax(G),

but to prove this for non-induced subgraphs requires the Perron-Frobenius Theorem. More on
this later.
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Chapter 3

The Laplacian Matrix of a Graph

3.1 Introduction to the graph Laplacian

Definition 3.1.1. Let G be a graph. The Laplacian matrix of G, denoted L(G), is defined by L(G) =
∆(G)−A(G), whereA(G) is the adjacency matrix ofG and ∆(G) is the diagonal matrix whose (i, i) entry
is equal to the degree of the ith vertex of G.

The Laplacian matrix of a graph carries the same information as the adjacency matrix obvi-
ously, but has different useful and important properties, many relating to its spectrum. We start
with a few examples.
Examples

1. Complete graphs If G = K4 then L(G) =


3 −1 −1 −1

−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

. We can observe that

v1 = (1 1 1 1)T is an eigenvector of L(G) corresponding to the eigenvalue 0, since the row
sums in L(G) are all equal to zero. This is true of the Laplacian matrix of any graph, and it
follows from the fact that in each row we have the degree of the corresponding vertex on
the diagonal, along with a −1 for each of its incident edges. At this point we don’t know the
multiplicity of the zero eigenvalue, but we know from Theorem 2.2.2 that any eigenvector
corresponding to a non-zero eigenvalue must be orthogonal to v1, which means that the
sum of its entries must be zero. So suppose that a+b+ c+d = 0 (with a,b, c,d not all zero)
and consider the equation

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3



a
b
c
d

 = λ


a
b
c
d

 ,

with λ 6= 0. This says

(3 − λ)a = b+ c+ d =⇒ (3 − λ)a = −a

(3 − λ)b = a+ c+ d =⇒ (3 − λ)b = −b

(3 − λ)c = a+ b+ d =⇒ (3 − λ)c = −c

(3 − λ)d = a+ b+ c =⇒ (3 − λ)d = −d

Any choice of a,b, c,d with a + b + c + d = 0 satisfies these equations, with 3 − λ =
−1, so λ = 4. The 3-dimensional subspace 〈v1〉⊥ of R4 consists entirely of eigenvectors of
L(G) corresponding to the eigenvalue 4, so this eigenvalue occurs with multiplicity 3 and
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specL(G) = [0, 4, 4, 4]. Note that the sum of the eigenvalues is 3× 4 which is also the trace as
expected.

In general, specL(Kn) = [0,n, . . . ,n︸ ︷︷ ︸
n−1

].

For the complete graphs, all the non-zero eigenvalues coincide. The greatest is n which is
also the graph order.

2. Cycles

Let C4 be the cycle of length 4. Then L(G) =


2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

 .

As above, an eigenvector of L(G) corresponding to a non-zero eigenvalue λ is a non-zero
vector whose entries sum to zero and satisfy

2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 3



a
b
c
d

 = λ


a
b
c
d

 ,

This means

(2 − λ)a = b+ d =⇒ (2 − λ)a = b+ d

(2 − λ)b = a+ c =⇒ (2 − λ)b = a+ c

(2 − λ)c = b+ d =⇒ (2 − λ)c = b+ d

(2 − λ)d = a+ c =⇒ (2 − λ)d = a+ c

Adding the first two equations gives (2−λ)(a+b) = 0, which means that λ = 2 or a+b = 0.
The possibility that λ = 2 gives two independent (and orthogonal) eigenvectors

v2 =


1
0

−1
0

 , v3 =


0
1
0

−1

 .

The remaining possibility a + b = 0 gives c + d = 0 also. Putting a = 1 we find the
eigenvector

v4 =


1

−1
1

−1


corresponding to the eigenvalue 4. So the Laplacian spectrum of C4 is [0, 2, 2, 4]. Again the
greatest eigenvalue is 4 (equal to the order) and the least positive eigenvalue is 2 this time.

In general the Laplacian spectrum of Cn is [2 − 2 cos( 2πk
n

),k = 0 . . .n − 1]. All eigenvalues
are in the range 0 to 4, and the least positive eigenvalue approaches 0 as n increases, and
occurs with multilicity 2. The greatest eigenvalue is 4 exactly if n is even (when π is an
integer multiple of 2πk

n
).

3. Stars Let G = Sn, the star on n vertices. This graph has one vertex that is adjacent to all
others, which have degree 1. We take n = 4 as an example. Then

L(G) =


3 −1 −1 −1

−1 1 0 0
−1 0 1 0
−1 0 0 1

 .
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As above we consider 
3 −1 −1 −1

−1 1 0 0
−1 0 1 0
−1 0 0 1



a
b
c
d

 = λ


a
b
c
d

 ,

with a+ b+ c+ d = 0 and λ 6= 0. Then

(3 − λ)a = b+ c+ d =⇒ (3 − λ)a = −a

(1 − λ)b = a

(1 − λ)c = a

(1 − λ)d = a

If a 6= 0, then 3 − λ = −1 and λ = 4. We then find −b = −c = −d = a, so we obtain the
eigenvector 

3
−1
−1
−1


corresponding to the eigenvalue 4.
Alternatively if a = 0 then remaining eigenvectors are in the 2-dimensional space of vectors
satisfying b + c + d = 0. We find that all elements of this space are eigenvectors of L(S4)
corresponding to λ = 1. So the spectrum of L(S4) is [0, 1, 1, 4]. The greatest eigenvalue is 4
again, and the least positive eigenvalue is 1, which occurs twice.

In general the Laplacian spectrum of Sn is [0, 1, . . . , 1︸ ︷︷ ︸
n−2

,n] (this is not too hard to check). The

minimum positive eigenvalue is 1 this time, and it occurs with multiplicity n− 2.

Theorem 3.1.2. The Laplacian matrix of a graph G is a positive semidefinite matrix.

Proof. Let B be the incidence matrix of G, in which rows are labelled by the edges of G, columns
by the vertices of G, and the entry in the (i, j) position is 1 or 0 according to whether vertex j
is incident with edge i or not. Thus each row of B has exactly two 1s, and a the number of 1s in
Column j of B is the degree of vertex j. Now adjust B by changing the first 1 in each row to −1 and
leaving all other entries alone. (Now B1 is what is called an “oriented incidence matrix” for G,
writing the two non-zero entries in Row i as 1 and −1 can be interpreted as assigning a direction
to edge i).

The square matrix BT1 B1 has rows and columns labelled by the vertices v1, . . . , vn ofG. Its entry
in the (i, j) position is the scalar product of Columns i and j of B1. This is deg(vi) if i = j, and
if i 6= j it is 0 unless there is a row in which both Column i and Column j have nonzero entries.
There can be at most one such row and it occurs when vivj is an edge of G, in which case the
scalar product of Columns i and j of B1 is (1)(−1) = −1. Thus

(BT1 B1)ij =

 deg(vi) if i = j
0 if i 6∼ j

−1 if i ∼ j

Thus BT1 B1 = L(G) and L(G) is positive semidefinite by Lemma 2.1.8.

Thus all eigenvalues of the Laplacian matrix of a graph are non-negative, and the zero eigen-
value occurs with multiplicy at least 1, since the row sums are all zero. Our next main result is
that the multiplicity of the zero eigenvalue tells us the number of connected components.

Theorem 3.1.3. LetG be a graph. Then the dimension of the nullspace of L(G) is the number of connected
components of G.
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Since the matrix L(G) is symmetric and therefore diagonalizable, the multiplicity of zero as a
root of its characteristic polynomial is the same as the dimension of the right nullspace of L(G)
which is the geometric multiplicity of zero as an eigenvalue of L(G). So in order to prove Theorem
3.1.3 it is enough to consider the right nullspace of L(G).

Proof. Let B be an oriented incidence matrix of G and write L(G) = BTB, where L(G) and B are
written with respect to the ordering v1, . . . , vn of the vertices of G. Suppose that x ∈ Rn is an
eigenvector of L(G) corresponding to 0, i.e. that L(G)x = 0. Then

BTBx = 0 =⇒ xTBTBx = 0 =⇒ (Bx)TBx = 0.

Thus Bx is a self-orthogonal vector in Rn which means Bx = 0, and it is enough to consider the
right nullspace of B. If the column vector x is orthogonal to every row of B, it means that the
components in the xi = xj whenver the vertices vi and vj are adjacent in G. Thus xi and xj must
be equal whenever there is a path from vi to vj in G, i.e. whenever vi and vj belong to the same
component of G.

Let C1, . . . ,Ck be the connected components of G, and for i ∈ {1, . . . ,k} let ui be the vector that
has 1s in the positions corresponding to the vertices of Ci and zeros elsewhere. Then ui is easily
confirmed to be in the right nullspace of L(G), and by the above argument every element of this
nullspace is a linear combination of u1, . . . ,uk. Since these vectors are linearly independent, they
form a basis of the zero eigenspace of L(G), and the dimension of this space is k, the number of
components.

An alternative version of Theorem 3.1.3 expresses the rank of L(G) as n−(the number of com-
ponents). Thus the graph Laplacian provides a feasible means for determining the number of
components in a graph. There is no direct way of reading this number from the adjacency matrix.

Just as the multiplicity of the zero eigenvalue of L(G) carries information about the number of
connected components of G, the appearance an/or multiplicity of the eigenvalue n tells us about
components of the complement G.

Theorem 3.1.4. Suppose that G is a graph of order n and that n occurs c times as an eigenvalue of L(G),
where c > 0. Then the number of connected components of G is c+ 1.

Example We have seen that n occurs n−1 times as an eigenvalue of L(Kn). The complement of Kn
has n isolated vertices and so has n connected components. The star Sn has n appearing once as
an eigenvalue, and its complement has two components - an isolated vertex and a copy of Kn−1.

Theorem 3.1.4 is a consequence of the following lemma which explains a complementarity
between the Laplacian spectra of a graph G and its complement.

Lemma 3.1.5. Let G be a graph and let 0, λ2, . . . , λn be the eigenvalues of L(G), listed in increasing order.
Then the eigenvalues of L(G) are 0,n− λn,n− λn−1, . . . ,n− λ2.

Proof. That 0 is an eigenvalue of L(G) is clear. Note that L(G) + L(G) = nI − J, which is the
Laplacian matrix of Kn. Suppose that i > 2 and let v be an eigenvector of G corresponding to λi.
We may assume that v ⊥ 1 (where 1 denotes the all-1 vector). Thus the sum of the entries of v is
zero. Then

L(G)v = (nI− J− L(G))v = nv− λiv = (n− λi)v.

Thus n − λi is an eigenvalue of L(G) whose eigenspace is the same as the L(G)-eigenspace of
λi.

From Lemma 3.1.5 is is immediate that n is an eigenvalue of L(G) if and only if 0 occurs at
least twice as an eigenvalue of L(G), i.e. of and only if G is disconnected. The multiplicity of n as
an eigenvalue of L(G) is one less than the multiplicity of 0 as an eigenvalue of L(G), i.e. one less
than the number of connected components of G.

Exercise: If n is an eigenvalue of L(G) for some graph G, prove that 0 occurs only once as an
eigenvalue of L(G).
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3.2 Spanning Trees

A tree is a connected graph with no cycle. Some basic properties of trees are noted below.

• A tree of order n has exactly n− 1 edges.

• Every tree has at least two leaves, i.e. vertices of degree 1.

• A graph is a tree if and only if it contains a unique path between any pair of its vertices.

• Trees can be regarded as minimally connected in the sense that the deletion of any edge
would result in a disconnected graph.

• If the maximum degree of a vertex in a tree T is ∆, then T has at least ∆ leaves.

Definition 3.2.1. Let G be a connected graph. A spanning tree of G is a subgraph T which is a tree and
whose vertex set is the full vertex set of G.

Every connected graph has at least one spanning tree, since one may be obtained by repeating
the step of deleting an edge that belongs to a cycle until none remain. Such a step will never
disconnect a graph.

We also introduce the following piece of matrix notation: if u is a vertex of a graph G with
Laplacian matrix L(G), we denote by L(G)[u] the matrix obtained from L(G) by deleting the row
and column corresponding to u. If G has order n, then L(G)[u] is a principal (n − 1) × (n − 1)
submatrix of L(G). Similarly, if u and v are both vertices ofG, we denote by L(G)[u, v] the principal
(n− 2)× (n− 2) submatrix of L(G) obtained by deleting the rows and columns labelled by u and
v. The main theorem of this section is the statement that, for any vertex u, det(L(G)[u]) counts the
spanning trees in G.

We have noted this already in the case of complete graphs and stars, and we also remark that
if G is disconnected then L has rank at most n− 2, so L[u] is singular for all u, which is consistent
with the theorem since the number of spanning trees in a disconnected graph is zero.

Theorem 3.2.2. Let G be a graph with Laplacian matrix L. Let u be any vertex of G. Then det(L[u]) is
the number of spanning trees in G.

The mechanism of the proof is induction on the number of edges. The induction step relies of
the following two distinct methods of moving from G to a graph with one fewer edge.

• Let e be an edge of G. Then G\e is the graph obtained from G by deleting e (but not the
vertices with which e is incident). Note that G\e need not be connected even if G is.

• Let e be an edge of G. Then G/e is obtained from G by contracting the edge e, which means
identifying the two vertices of e together. If e = uv then u and v are identified as a single
vertex (still called either u or v) of G/e, and all neighbours of u or v in G are neighbours of
this merged vertex in G/e. Note that if u and v have common neighbours in G, then G/e
has multiple edges. If G is connected, then G/e is also connected.

• The number of edges in both G\e and G/e is one less than the number in G.

For any graphG, we denote the number of spanning trees ofG by τ(G). The proof of Theorem
3.2.2 is presented as a series of lemmas.

Lemma 3.2.3. Let G be a (connected) graph and let e be an edge of G. Then

τ(G) = τ(G\e) + τ(G/e).

Proof. Every spanning tree of G that contains e contracts to a spanning tree of G/ewhen the edge
e is contracted, and every spanning tree of G/e may be expanded to a spanning tree of G by
reintroducing the edge e. Thus the number of spanning trees of G that contain e is τ(G/e).

On the other hand any spanning tree of G that does not contain e is a spanning tree of G\e.
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Since every spanning tree of G either contains e or does not contain e, it follows that

τ(G) = τ(G/e) + τ(G\e),

as required.

The next lemma deals with the relationship between the Laplacian matrices of G, G/e and
G\e. For a graph G and a designated ordering of its vertices, we denote by Evv the matrix that
has a 1 in the row and column labelled by the vertex v, and zeros elsewhere.

Lemma 3.2.4. Let G be a graph and let Now write e = uv. Then

L(G)[u] = L(G\e)[u] + Evv.

Proof. The Laplacian matrix of G\e differs from that of G only in the entries in positions (u,u),
(v, v), (u, v) and (v,u). Three of these entries, since they belong to the row and column labelled
by u, are absent from L(G)[u] and from L(G\e)[u]. The fourth represents the degree of v, which is
greater by one in G than in G\e. Hence the (n − 1) × (n − 1) matrices L(G)[u] and L(G\e[u]) are
related by the equation

L(G)[u] = L(G\e)[u] + Evv.

The next lemma relates (n − 2)× (n − 2) principal submatrices of L(G) to those of L(G/e). In
the statement of the lemma, we interpret that when the edge e = uv is contracted to form G/e, it
is the vertex u that is “absorbed” into v and the vertex v that survives.

Lemma 3.2.5. Let G be a graph and let e = uv be an edge of G. Then

L(G)[u, v] = L(G/e)[v].

Proof. Let w and z be vertices of G (other than u and v). If w 6= z, the entry in the (w, z) position
of L(G)[u, v] is −1 or 0 according as w is adjacent to z or not. Since w and z are adjacent in G if
and only if they are adjacent in G/e, the (w, z)-entry of L(G/e)[v] is the same as that of L(G)[u, v].
The (w,w)-entry of L(G)[u, v] is the degree in G of w. This is the same as the degree of w in G/e
(bearing in mind that a double edge from w to v in G/e contributes 2 to the degree of w in this
graph). So the diagonal entries of L(G)[u, v] also coincide with those of L(G/e)[v].

We are now in a position to complete the proof of Theorem 3.2.2, by induction on the number
of edges.

Base: If G is a graph with a single edge, then the number of spanning trees of G is 1 if G has order

2 and zero if the order of G exceeds 2. If the order of G is 2, then L(G) =
(

1 −1
−1 1

)
and every

1 × 1 principal submatrix of L(G) has determinant 1. If the order of G is 3 or greater, then L(G)

has one 2 × 2 prinicipal submatrix equal to
(

1 −1
−1 1

)
and is otherwise full of zeros. In this

case L(G) has rank 1 and all of its (n− 1)× (n− 1) principal submatrices have determinant zero,
which is the number of spanning trees in G.
So the theorem is true for graphs with one edge.

Induction hypothesis: We consider a particular graph G and assume that the theorem holds for all
graphs with fewer edges than G (in particular for G\e and G/e for any edge e of G).

Induction step: Choose a vertex u of G. We need to show that detL(G)[u] = τ(G). If u is isolated
in G, then τ(G) and detL(G)[u] are both equal to zero and the theorem holds. If not, then there is
an edge e = uv in G. By Lemma 3.2.3,

τ(G) = τ(G\e) + τ(G/e).

By the induction hypothesis,
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• τ(G\e) = det(L(G\e)[u]), and

• τ(G/e) = det(L(G/e)[v]).

From Lemma 3.2.5 we have L(G/e)[v] = L(G)[u, v]. From Lemma 3.2.4 we have

L(G)[u] = L(G\e)[u] + Evv.

Consider applying a determinant calculation using cofactor expansion by the Row of v to the
above description of L(G)[u]. Where Cvw denotes the cofactor of the entry in the (v,w)-position
of L(G)[u], we have

det(L(G)[u]) =
∑

w∈V(G)\{u}

(L(G)[u])vwCvw

=
∑
w 6=u,v

L(G\e)[u]vwCvw + (L(G)[u])vvCvv

=
∑
w 6=u

L(G\e)[u]vwCvw + Cvv,

where the last line is an application of Lemma 3.2.4. Finally we have∑
w 6=u

L(G\e)[u]vwCvw + Cvv = det(L(G\e)[u]) + det(L(G)[u, v])

= τ(G\e) + τ(G/e),

by the induction hypothesis. Application of Lemma 3.2.3 now completes the proof.

Corollary 3.2.6. The number of spanning trees of the complete graph Kn is nn−2.

Proof. Since spec(L(Kn)) = [0,n, . . . ,n︸ ︷︷ ︸
n−1

], the sum of all of the (n− 1)× (n− 1) principal minors of

L(Kn) is nn−1. Since it follows from Theorem 3.2.2 that all of these n principal minors are equal,
each of them is equal to nn−2.

In fact, a slighty stronger statement than Theorem 3.2.2 can be proved. Not only are all of the
principal (n − 1) × (n − 1) principal minors of L(G) equal to τ(G), but the cofactor of every entry
of L(G) is equal to τ(G).

For a square matrix A the cofactor Cij of the entry Aij is the (−1)i+j × det(A[Ri,Cj]), where
A[Ri,Cj] is the matrix obtained by deleting Row i and Column j form A. The adjugate of A,
denoted adjA, is the transpose of the matrix of cofactors ofA, i.e. it is the matrix whose (i, j)-entry
is Aji. The relationship between A and its adjugate is

Aadj(A) = det(A)In = adj(A)A.

If A is invertible, this means that A−1 = 1
detAadj(A).

Lemma 3.2.7. Let G be a graph with Laplacian matricx L(G). Then for all (i, j), the cofactor Cij of L(G)
is equal to τ(G).

Proof. First suppose thatG is disconnected. Then τ(G) = 0, and the rank of L(G) is less than n−1,
so all (n− 1)× (n− 1) minors of L(G) are zero. Thus all cofactors of L(G) are equal to zero which
is τ(G).

If G is connected, then since L(G) is singular we know that L(G)adj(L(G)) = 0n×n. Further-
more, L(G) has rank n−1 which means that the right nullspace of L(G) is 1-dimensional, spanned
by the all-1 vector 1. Thus every column of adj(L(G)) is a scalar multiple of 1. Since L(G) is sym-
metric, so also is adj(L(G)), so every row of adj(L(G)) is a scalar multiple of 1T . Since the diagonal
entries of adj(L(G)) are all equal to τ(G), it follows that every entry of adj(L(G)) is equal to τ(G),
as required.
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3.3 Connectivity and the graph Laplacian

Let G be a connected graph of order n. If S is a set of vertices of G, then G\S is the graph obtained
from G by deleting the vertices of G and their incident edges.

Definition 3.3.1. A vertex-cutset of G is set S of vertices of G for which the graph G\S is disconnected.
The vertex connectivity of G, denoted κ(G), is defined to be the minimum number of vertices in a vertex-
cutset.

Notes

1. κ(G) = 0 if and only if G is disconnected.

2. If G is a tree on more than 2 vertices, then κ(G) = 1.

3. If κ(G) = 1, it means that G has vertices x and ywith the property that every path from x to
y goes via a particular vertex v (a cut vertex.

4. If κ(G) = k and S is a vertex-cutset with k elements, it means that there is a pair of vertices
x and y in G (not in S) with the property that every path from x to y in G is via a vertex of S
(but there is no set of fewer than k vertices for which there exists such a pair).

5. G is said to be t-vertex-connected if it cannot be disconnected by the deletion of fewer than
t vertices. So if κ(G) = t, it means that G is t-vertex-connected but not (t + 1)-vertex-
connected.

6. The complete graph Kn cannot be disconnected by the deletion of vertices, so its vertex
connectivity is not defined.

7. If G is a non-complete graph of order n, then its vertex connectivity is at most n− 2, since it
can be disconnected by the removal of all vertices except for some non-adjacent pair.

Definition 3.3.2. An edge cutset of a connected graph G is a set of edges of G whose deletion would
disconnect G. The edge-connectivity of G, denoted ε(G), is the minimum number of edges in an edge-
cutset.

Notes

1. A single edge whose deletion would disconnect G is called a bridge or a cut edge. If e = uv is
a bridge in G, then e is the unique path between u and v in G.

2. If ε(G) = 2 and {e1, e2} is an edge-cutset in G, it means that every cycle in G that contains e1
also contains e2, or that every cycle containing e2 also contains e1.

3. In any connected graphG, let δ(G) be the minimum of the vertex degrees inG, and let v be a
vertex with deg(v) = δ. Then G can be disconnected by the deletion of the δ edges incident
with v, and so ε(G) 6 δ.

4. It follows that the edge connectivity of a non-complete graph of order n is at most n− 2.

Lemma 3.3.3. Let G be a (non-complete) connected graph on n vertices. Then κ(G) 6 ε(G).

Proof. Let m = ε(G) (note m 6 n − 2) and suppose that S = {e1, . . . , em} is a set of edges of G
whose deletion disconnectsG. Since the removal of a single edge can break a connected graph into
at most two components, and since S is a minimal set whose deletion disconnects G, it follows
that G\S has exactly two connected components. Furthermore, since the restoration of any of
the edges ei would reconnect G\S, it follows that for each i, the vertices xi and yi of ei belong
to different components of G\S. We may label these vertices so that x1, . . . , xm all belong to the
component C1 of G\S, and y1, . . . ,ym all belong to the other component C2 (note that the xi are
not necessarily distinct, same for the yi).
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If the xi are not all of the vertices of C1, then deleting the vertices xi and their incident edges
disconnects G. Since the number of xi is at mostm, this shows that κ(G) 6 m.

On the other hand, if {x1, . . . , xm} is the full vertex set of C1, then deletion of this set may
not disconnect G. In this case the only possible neighbours of x1 in G are those xj for which
xj 6= x1 and those yl for which xl = x1. The total number of such vertices is at most m, and their
deletion (along with their incident edges) leaves a graph G ′ in which the vertex x1 is isolated.
Since m 6 n − 2, the graph G ′ possesses at least two more vertices, hence it is disconnected and
κ(G) 6 m.

Now we return to the Laplacian spectrum of a graph. Let G be a graph of order nwith Lapla-
cian matrix L(G), and let 0, λ2, . . . , λn be the eigenvalues of L(G), in increasing order. We know
that λ2 > 0 if and only if G is connected. We show now that λ2 is bounded above by κ(G). To see
this we need the following lemma. In the statement of this lemma, the column vector x is consid-
ered as a real-valued function on the vertex set of G, its value on the vertex u is the component
Xu.

Lemma 3.3.4. Let G be a graph with Laplacian matrix L. Let x ∈ Rn. Then

xTLx =
∑

uv∈E(G)

(xu − xv)
2.

Proof. Let B be an oriented incidence matrix for G, and recall that L = BTB. Then

xTLx = xTBTBx = (Bx)T (Bx) = (Bx) · (Bx).

The rows of B (and hence the entries of Bx) are labelled by the edges of G. If e = uv is an edge of
G, then the entry of Bx in the position corresponding to e is ±(xu − Xv). Thus

xTLx =
∑

uv∈E(G)

(xu − xv)
2.

We now show that λ2(G) is the minimum over all unit vectors x satisfying x ⊥ 1 of the expres-
sion

∑
uv∈E(G)(xu − xv)

2.

Theorem 3.3.5. Let G be a graph of order n with Laplacian spectrum 0 6 λ2 6 · · · 6 λn. Then λ2 is
the minimum over all unit vectors x that belong to 1⊥ of the expression xTL(G)x, and this minimum is
attained if and only if x is an eigenvector of L(G) corresponding to λ2.

Proof. Let {v1, v2, . . . , vn} be an orthonormal basis of Rn consisting of eigenvectors of L(G), where
v1 = 1√

n
1 and otherwise vi corresponds to the eigenvalue λi. Let x be a unit vector in Rn that is

orthogonal to 1. Then
x = a2v2 + · · ·+ anvn

for some real numbers ai with
∑
a2
i = 1.

xTL(G)x = (a2v2 + · · ·+ anvn)T (a2λ2v2 + · · ·+ anλnvn)
= λ2a

2
2 + · · ·+ λna2

n

= λ2(a
2
2 + · · ·+ a2

n) +

n∑
i=3

(λi − λ2)a
2
i

= λ2 +

n∑
i=3

(λi − λ2)a
2
i.

Since λi − λ2 is non-negative whenever i > 3, the last line above says that xTL(G)x > λ2 and that
equality occurs here if and only if ai = 0 whenever λi > λ2, which means that x is an eigenvector
of L(G) corresponding to λ2.
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Lemma 3.3.4 and Theorem 3.3.5 together give us the necessary ingredients to prove that λ2(G)
is bounded above by the vertex connectivity of G.

Theorem 3.3.6. Let G be a (non-complete) connected graph. Then λ2(G) 6 κ(G).

Proof. Write k for κ(G) and let S be a set of vertices of G whose deletion disconnects G. Since the
graph G\S is disconnected, λ2(G\S) = 0, and there exists a unit vector x ′ in Rn−k that is a zero
eigenvector of L(G\S) and is orthogonal to 1n−k. Let x be the unit vector in Rn that coincides
with x ′ on the vertices of G\S and has zeros in the positions corresponding to vertices of S. By
Theorem 3.3.5

λ2(G) 6 x
TL(G)x =

∑
uv∈E(G)

(xu − xv)
2.

We now break this sum into separate components, one involving the edges of G\S and one in-
volving edges for which one vertex is in S and the other is not. There is no need to consider edges
whose vertices are both in S since xw = 0 whenever w ∈ S. Thus∑

uv∈E(G)

(xu − xv)
2 6

∑
uv∈E(G\S)

(xu − xv) +
∑
u∈S

∑
v6∈S

x2
v.

Since x ′ is a zero eigenvector of L(G\S) (which means x is constant on the components of G\S),
the term

∑
uv∈E(G\S)(xu − xv) is zero. The other term is bounded above by∑

u∈S

∑
v∈V(G)

x2
v =
∑
u∈S

||x|| = |S| = k.

Thus λ2(G) 6 k as required.

Definition 3.3.7. For a connected graph G, λ2(G) is called the algebraic connectivity of G.

The following example shows that λ2(G) may be equal to the vertex connectivity ofG, or quite
far away from it.
Example For the cycle Cn of length n, λ2(Cn) = 2− 2 cos( 2π

n
). So λ2(C4) = 2 which is equal to the

vertex connectivity of C4. For all n > 4, κ(Cn) = 2. However, as n→∞, λ2(Cn)→ 0. This reflects
the fact that as n increases, Cn becomes more “flimsily” vertex-connected - to disconnect it, an
ever decreasing proportion of its vertices needs to be removed. This observation is a heuristic not
a theorem - there are several classes of graphs for which the algebraic connectivity behaves in this
manner. Graphs with low values of λ2 tend to have high diameter compared to their order.

Despite this remark another conclusion from looking at the graphs Cn is that the “gap” be-
tween the algebraic connectivity and the vertex connectivity of a graph is not always easy to
interpret. Another way of looking at the meaning of λ2 is to consider how it changes when ad-
justments are made to a graph. The step of adding an edge between two non-adjacent vertices in
a graph cannot decrease the vertex connectivity, and can leave it unchanged or increase it by 1.
Our next theorem shows that something like this is true for the algebraic connectivity.

Theorem 3.3.8. Let G be a (non-complete) graph of order n, and let H be obtained from G by adding an
edge between two non-adjacent vertices. Then

λ2(G) 6 λ2(H) 6 λ2(G) + 2.

Proof. Let r and s be the two vertices that are adjacent in H and not in G. Let x be a unit vector in
Rn, orthogonal to 1, for which

λ2(H) =
∑

uv∈E(H)

(xu − xv)
2 =

∑
uv∈E(G)

(xu − xv)
2 + (xr − xs)

2.

Since λ2(G) is the minimum over all unit vectors y (orthogonal to 1 of the sum of (yu − yv)
2 over

all edges uv of G, it follows that λ2(G) is at most equal to
∑
uv∈E(H)(xu − xv)

2 and in particular
λ2(G) 6 λ2(H).
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On the other hand, let z be a unit eigenvector of L(G) corresponding to λ2(G). Then

λ2(H) 6
∑

uv∈E(G)

(zu − zv)
2 + (zx − zy)

2.

Note that
(zx + zy)

2 = z2
x + z

2
y + 2zxzy > 0 =⇒ −2zxzy 6 z2

x + z
2
y.

Furthermore, since z+x and zy are components of a unit vector, we know that z2
x + z

2
y 6 1. Thus

0 6 (zx − zy)
2 = −2zxzy + (z2

x + z
2
y) 6 1 + 1 = 2.

Thus
λ2(H) 6

∑
uv∈E(G)

(zu − zv)
2 + (zx − zy)

2 =⇒ λ2(H) 6 λ2(G) + 2.
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Chapter 4

Strongly Regular Graphs

4.1 Parameters and Properties

Recall that a (simple, undirected) graph is regular if all of its vertices have the same degree. This is
a strong property for a graph to have, and it can be recognized easily from the adjacency matrix,
since it means that all row sums are equal, and that 1 is an eigenvector.

If a graph G of order n is regular of degree k, it means that knmust be even, since this is twice
the number of edges in G. If k 6 n − 1 and kn is even, then there does exist a graph of order n
that is regular of degree k (showing that this is true is an exercise worth thinking about).

Regularity is a strong property for a graph to have, and it implies a kind of symmetry, but
there are examples of regular graphs that are not particularly “symmetric”, such as the disjoint
union of two cycles of different lengths, or the connected example below.

Various properties of graphs that are stronger than regularity can be considered, one of the
most interesting of which is strong regularity.

Definition 4.1.1. A graph G of order n is called strongly regular with parameters (n,k, λ,µ) if

• every vertex of G has degree k;

• if u and v are adjacent vertices of G, then the number of common neighbours of u and v is λ (every
edge belongs to λ triangles);

• if u and v are non-adjacent vertices of G, then the number of common neighbours of u and v is µ;

• 1 6 k < n − 1 (so the complete graph and the null graph of n vertices are not considered to be
strongly regular).

So a srg (strongly regular graph) is a regular graph in which the number of common neigh-
bours of a pair of vertices depends only on whether that pair forms an edge or not).

Examples

1. C4 is strongly regular with parameters (4, 2, 0, 2).

2. C5 is strongly regular with parameters (5, 2, 0, 1).

3. Apart from those two examples, Cn is not strongly regular: C1,C2 and C3 are ruled out
because they are complete graphs, and for n > 6, a pair of non-adjacent vertices may have
either 1 common neighbour or none.

Strongly regular graphs are elusive and somewhat mysterious objects that have connections
to various combinatorial constructions and to algebra over finite fields. A couple of slightly more
complicated general families are described below.
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Example 4.1.2. Recall that the line graph of Kn has vertices given by the
(
n
2

)
edges of Kn, and a

pair of vertices is adjacent if and only if the corresponding edges in Kn share a vertex.

• Let x be a vertex of L(Kn), corresponding to the edge uv of Kn. The degree of x in L(Kn)
is the number of edges in Kn (other than uv) that are incident with either u or v. This is
2× (n− 2) = 2n− 4.

• Suppose that x and y are adjacent vertices in L(Kn), corresponding to the edges uv and uw
of Kn. The number of common neighbours of x and y in L(Kn) is the number of edges of Kn
(other than uv and uw) that share a vertex with both uv and uw. There are n − 2 of these:
vw and the n− 3 remaining edges involving u.

• Suppose that x and y are non-adjacent vertices in L(Kn), corresponding to edges uv and wt
of Kn. Then the number of common neigbours of x and y in L(Kn) is the number of edges
of Kn that are incident with one vertex in {u, v} and one in {w, t}. There are four of these:
uw, ut, vw and vt. So x and y have four common neighbours in L(Kn).

The conclusion is that L(Kn) is a strongly regular graph with parameters
((
n
2

)
, 2n− 4,n− 2, 4

)
.

Example 4.1.3. Let Kn,n denote the complete bipartite graph with n vertices in each part. The line
graph L(Kn,n) has n2 vertices, all of degree 2n− 2. If two of these vertices are adjacent, they have
n− 2 common neighbours. If two are non-adjacent, they have 2 common neighbours. So L(Kn,n)
is a strongly regular graph with parameters (n, 2n− 2,n− 2, 2).

Note that the complement of L(Kn) is the Kneser graph Kn(n, 2). This is the graph whose
vertices are the 2-element subsets of a set with n elements, and in which two vertices are adjacent
if and only if the subsets that they represent are disjoint. The Kneser graph Kn(4, 2) consists of
three isolated edges, and Kn(5, 2) is the famous Petersen graph. In general Kn(n, 2) is a strongly

regular graph with parameters
((
n
2

)
,
(
n−2

2

)
,
(
n−4

2

)
,
(
n−3

2

))
.

It is true in general that the complement of a strongly regular graph is strongly regular and
the relationship between their parameters can be figured out without too much trouble.

Theorem 4.1.4. Let G be a strongly regular graph with parameters (n,k, λ,µ). Then G is a strongly
regular graph with parameters (n,n− k− 1, , ).

Proof. It is straightforward to observe that G has n vertices and is regular of degree n− k− 1.
Let uv be an edge of G. The number of triangles to which uv belongs in G is the number of

vertices in G that are adjacent to neither u nor v. In G, uv is not an edge, each of u and v has k
neighbours, and µ vertices are common neighbours of u and v. So the number of vertices that are
adjacent to at least one of u and v is 2k− µ. Thus the number of vertices (other than u and v) that
is adjacent to neither u nor v is n − 2 − 2k + µ. This is the number of triangles to which the edge
uv belongs in G.

Now suppose that u and v are non-adjacent edges in G. Then uv is an edge of G. Each of u
and v has k − 1 additional neighbours in G, and they have λ common neighbours, so 2k − 2 − λ
is the number of vertices (other than u and v themselves) that are adjacent in G to at least one of
u and v. That leaves n− 2 − (2k− 2 − λ) or n− 2k+ λ vertices in G that are adjacent to neither u
nor v. This is the number of common neighbours of u and v in G.

We conclude that G is a strongly regular graph with parameters (n,n − k − 1,n − 2 − 2k +
µ,n− 2k+ λ).

Our final theorem in this section presents a compatibility condition on the parameters in a
strongly regular graph. Not surprisingly, not every set of four non-negative integers is a candidate
for being the set of parameters. After looking at the adjacency spectrum of a srg in the next section,
we will obtain some more constraints of this nature.

Theorem 4.1.5. Let G be a strongly regular graph with parameters (n,k, λ,µ). Then k(k − λ − 1) =
(n− k− 1)µ.
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Proof. We count, in two ways, the number of ordered triples of the form (u, v,w) in G with the
property that v is adjacent to both u and w and that u and w are not adjacent to each other.

Suppose we choose v first - we have n choices here. Regardless of how this choice is made,
the number of choices avaiable for a neighbour u of v is k. Having chosen u, the final step is
to choose a vertex w that is adjacent to v but is not a common neighbour of u and v. There are
k − 1 neighbours of v from which w may be chosen, but λ of these are also neighbours of u. So
the number of choices for w is k − 1 − λ. Hence the number of choices for the triple (u, v,w) is
nk(k− λ− 1).

On the other hand suppose we choose u first. We have n choices for u, and then we may
choosew from among the n−k− 1 non-neighbours of u. Having done this we have µ choices for
v among the common neighbours of u and w. So the number of choices for the triple (u, v,w) is
n(n− k− 1)µ.

Putting these two counts together we find

nk(k− λ− 1) = n(n− k− 1)µ =⇒ k(k− λ− 1) = (n− k− 1)µ.

4.2 The Adjacency Spectrum of a strongly regular graph

In this section we use the defining properties of a strongly regular graph to show that the adja-
cency matrix of such a graph satisfies a particular quadratic equation, from which we deduce that
the adjacency spectrum can have at most three distinct elements. It is clear that the adjacency
matrix of a k-regular graph has k as an eigenvalue with corresponding eigenvector 1, since the
row sums are all equal to k.

Lemma 4.2.1. Let G be a k-regular graph on n vertices, with adjacency matrix A. Then the multiplicity
of k as an eigenvalue of A is the number of connected components of G.

Proof. The spectrum of A is the list of roots of the polynomial det(A− xI). This may be rewritten
as

det (A− kIkI− xI) = det ((k− x)I− (kI−A)) = det ((k− x)I− L) ,

where L is the Laplacian matrix of A. Thus x is an eigenvalue of A if and only if k − x is an
eigenvalue of L with the same multiplicity. In particular the multiplicity of k as an eigenvalue of
A is the multiplicity of 0 as an eigenvalue of L, which is the number of connected components of
G, by Theorem 3.1.3.

Now let G be a connected strongly regular graph with parameters (n,k, λ,µ), and with adja-
cency matrix A. Then A2

uv is the number of walks of length 2 from u to v in G, so

A2
uv =


k if u = v
λ if uv is an edgeof G
k if u = v
u and v are not adjacent in G

Thus
A2 = kI+ λA+ µ(J− I−A) =⇒ A2 − (λ− µ)A− (k− µ)I = µJ.

Now let v be an eigenvector of A corresponding to an eigenvalue θ with θ 6= k. Then v is orthog-
onal to 1 and so Jv = 0. Multiplying both sides of the above equation on the right by v gives

θ2v− (λ− µ)θv− (k− µ)v = 0.

Since v is not the zero vector and since θ, λ and µ are all real numbers, this means that

θ2 − (λ− µ)θ− (k− µ) = 0.
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The roots of this quadratic equation are

(λ− µ)±
√
(λ− µ)2 + 4(k− µ)

2
.

For convenience we write ∆ for the expression (λ− µ)2 + 4(k− µ). The eigenvalues of A then are

k, θ1 =
(λ− µ) +

√
∆

2
, θ2 =

(λ− µ) −
√
∆

2
.

Note that∆ is positive. It is clear that k−µ cannot be negative, since the number of neighbours
of a vertex v of G cannot be fewer than its number of common neighbours with another vertex u.
It is possible that k − µ = 0, this happens for example in the case of complete bipartite graphs.
However if k = µ then λ cannot also be equal to µ, since an edge in a k-regular graph can belong
to at most k− triangles.

Since G is connected, k has multiplicity 1. Let m1 and m2 be the respective multiplicities of θ1
and θ2 as eigenvalues of A. Since the trace of A is 0, we have the following equations

m1 +m2 = n− 1, m1θ1 +m2θ2 + k = 0.

Solving these equations gives

m1 = −
(n− 1)θ2 + k

θ1 − θ2
, m2 =

(n− 1)θ1 + k

θ1 − θ2
.

Note that θ1 − θ2 =
√
∆. Entering the expressions for θ1 and θ2 in terms of the parameters of G to

the equations above, we find

m1 =
1
2

[
(n− 1) −

2k+ (n− 1)(λ− µ)√
∆

]
m2 =

1
2

[
(n− 1) +

2k+ (n− 1)(λ− µ)√
∆

]

Since m1 +m2 = n − 1 it is clear that if one of m1,m2 is an integer then so is the other. That m1
is an integer requires either that ∆ is a square or that 2k + (n − 1)(λ − µ) = 0. In the latter case n
must be odd.

Example 4.2.2. Let G be the Petersen graph, with parameters (10, 3, 0, 1). Then

k = 3,∆ = 1 + 4(2) = 9, θ1 = 1, θ2 = −2, m1 = 4, m2 = 5.

We have shown that a connected strongly regular graph has exactly three distinct eigenvalues,
k with multiplicity 1 and θ1 and θ2 with multiplicities adding to n − 1. The product of θ1 and θ2
is non-positive (it can be zero in the case k = µ), and θ1 and θ2 are distinct. We now show that a
connected regular graph with exactly three distinct eigenvalues must be strongly regular.

Theorem 4.2.3. LetG be a connected graph of order n that is regular of degree k, and letA be its adjacency
matrix. Suppose that A has just three distinct eigenvalues: k,α and β. Then A is strongly regular.

Proof. Since G is connected, A has k just once as an eigenvalue, with corresponding eigenvector
1. Every eigenvector of A corresponding to α or β is in the right nullspace of the matrix A ′ =
(A−αI)(A−βI) (to see this note that (A−αI) and (A−βI) commute with each other). Since the
eigenspaces of A and B together account for the subspace of Rn of dimension n− 1 consisting of
all vectors orthogonal to 1. It follows that A ′ has rank 1 and that every row of A ′ has all entries
equal. Finally

A ′1 = (A− αI)(A− βI)1 = (A− αI)(k− β)1 = (k− α)(k− β)1,
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which means that
A ′ = (A− αI)(A− βI) =

1
n(k− α)(k− β)

J.

In particular then A2 is a linear combination of A, I and J, hence of A, I and J− I−A. This means
that A2 has the same entry in every position on the diagonal, the same entry in all positions
corresponding to edges of G, and the same entry in all positions corresponding to non-edges of
G. Since A is a (0, 1)-matrix, these entries are all non-negative integers and it follows that G is
strongly regular.

4.3 Two classes of strongly regular graphs

Let G is a strongly regular graph with parameters (n,k, λ,µ), and assume that k 6 n−1
2 ; there is

no real loss of generality in this assumption since either G or its complement has this property.
We have seen that the eigenvalues of G occur with multiplicities

1,m1 =
1
2

[
(n− 1) −

2k+ (n− 1)(λ− µ)√
∆

]
, m2 =

1
2

[
(n− 1) +

2k+ (n− 1)(λ− µ)√
∆

]
.

The condition thatm1 andm2 are integers means that one of the following two cases occurs:

1. 2k+ (n− 1)(λ− µ) 6= 0 and ∆ is an integer square;m1 6= m2 in this case.

2. 2k+(n−1)(λ−µ) 6= 0, andm1 = m2 = 1
2 (n−1) (this is referred to as the “half case” for this

reason). In this case nmust be odd obviously. Furthermore, since 2k 6 n− 1, the condition
that

2k = (n− 1)(µ− λ)

can be satisfied only if 2k = n − 1 and µ − λ = 1, so λ = µ − 1 Moreover we know from
Theorem 4.1.5 that k(k−λ− 1) = (n− 1−k)µ. Since n− 1−k = k and λ+ 1 = µ, this means
that k− µ = µ or k = 2µ. Finally n = 2k+ 1 = 4µ+ 1 and G has parameters

(4µ+ 1, 2µ,µ− 1,µ)

for some positive integer µ. A strongly regular graph of this type is called a conference graph.

We look briefly at some examples of both types. The Kneser graph Kn(n, 2) (the complement
of the line graph of Kn) is an example of the first type. In the case n = 5, this is the Petersen graph
which has parameters (10, 3, 0, 1), with

∆ = 12 + 4(3 − 1) = 9, θ1 =
−1 + 3

2
= 1, θ2 =

−1 − 3
2

= −2.

m1 =
1
2

[
9 −

6 + 9(−1)
3

]
= 5, m2 =

1
2

[
9 +

6 + 9(−1)
3

]
= 4.

In general the Kneser graph Kn(n, 2) has parameters((
n

2

)
,
(
n− 2

2

)
,
(
n− 4

2

)
,
(
n− 3

2

))
.

Recall that for any integer m,
(
m+1

2

)
−
(
m
2

)
= m (easily verified by a calculation or by a counting

exercise). Thus λ− µ = 4 − n for the Kn(n, 2), and k− µ = n− 3. Then

∆ = (4 − n)2 + 4(n− 3) = n2 − 8n+ 16 + 4n− 12 = n2 − 4n+ 4 = (n− 2)2,

so ∆ is a square. The eigenvalues are

θ1 =
(4 − n) + (n− 2)

2
= 1, θ2 =

(4 − n) − (n− 2)
2

= 3 − n.
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The multiplicities are given by

m1 +m2 =

(
n

2

)
− 1

m1(1) +m2(3 − n) = −

(
n− 2

2

)
=⇒ m2(n− 2) =

(
n

2

)
+

(
n− 2

2

)
− 1

=
n(n− 1) + (n− 2)(n− 3) − 2

2

=
2n2 − 6n+ 4

2
= n2 − 3n+ 2
= (n− 2)(n− 1) =⇒ m2 = n− 1.

Thenm1 =
(
n
2

)
− n.

Families of examples of the second type are a bit harder to construct, although one example is
the cycle C5, which has parameters (5, 2, 0, 1). In this graph ∆ = 1 + 4(2 − 1) = 5 is not a square,
and

2k+ (n− 1)(λ− µ) = 4 + 4(−1) = 0.

The eigenvalues are −1±
√

5
2 , which are irrational, both appearing with multiplicity 2.

The graph C5 does belong to an infinite family of strongly regular graphs known as the Paley
graphs, which are constructed from finite fields. A Paley graph on p vertices exists for every p
with the property that p is a power of some prime and p ≡ 1 mod 4. We will only consider the
case where p is prime, examples of primes of the form 4t+ 1 are 5, 13, 17 etc.

For such a prime p, let Fp denote the finite field Z/pZ of integers modulo p. The elements of
FP are 0, 1, . . . ,p − 1, with addition and multiplication modulo p. The non-zero elements form
a group under multiplication, and this group is cyclic of order p − 1 = 4µ, because all finite
subgroups of multiplicative groups of fields are cyclic. This means that there is an element x
of Fp, with the property that xp−1 = 1 and the powers x, x2, . . . , xp−1 are the distinct non-zero
elements of Fp in some order. Note that

(x
p−1

2 )2 = 1,

which means that x
p−1

2 is a square root of 1 in Fp that is different from 1, so it is −1. Then (since
p − 1 is a multiple of 4), we have that x

p−1
4 is an element of Fp whose square is −1. Thus −1 is

a square in Fp if (and only if) p ≡ 1 mod 4. The squares in Fp are the even powers of x (and
0), they account for p+1

2 of the p elements. Note also that the set of squares in Fp is closed under
multiplication, since the product of two squares is a square.

Example 4.3.1. If p = 13, the squares in F13 are −4,−3,−1, 0, 1, 3, 4:

02, 12 = 1, 22 = 4, 32 = −4, 42 = 3, 52 = −1, 62 = −3, 72 = −3, 82 = −1, 92 = 3, 102 = −4, 112 = 4, 122 = 1

Definition 4.3.2. For p = 4µ + 1, the Paley graph P(p) is defined to be the graph whose vertices are
labelled by the elements of Fp and in which two vertices are adjacent if the difference of the corresponding
elements of Fp is a square.

The fact that −1 is a square means that an element is a square if and only if its negative is, so
this adjacency condition does not depend on which element is subtracted from the other to form
the difference. The degree of each vertex of P(p) is p−1

2 , and P(p) is a strongly regular graph with
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parameters (4µ + 1, 2µ,µ − 1,µ). For example P(13) has parameters (13, 6, 6, 3). The adjacency
matrix of P(13) (with rows and columns labelled 0 through 12) is

0 1 0 1 1 0 0 0 0 1 1 0 1
1 0 1 0 1 1 0 0 0 0 1 1 0
0 1 0 1 0 1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 1 0 0 0 0 1
1 1 0 1 0 1 0 1 1 0 0 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0
0 0 1 1 0 1 0 1 0 1 1 0 0
0 0 0 1 1 0 1 0 1 0 1 1 0
0 0 0 0 1 1 0 1 0 1 0 1 1
1 0 0 0 0 1 1 0 1 0 1 0 1
1 1 0 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 0 0 1 1 0 1 0 1
1 0 1 1 0 0 0 0 1 1 0 1 0


This is a circulant matrix (every row is obtained from the previous one by shifting the entries one
step to the right and then wrapping the last entry to the front).
Note: it is not true that conference graphs exist of all orders n with n ≡ 1 mod 4. For example
there is no conference graph on 21 vertices.
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