
Chapter 1

Matrices and Graphs

1.1 The Adjacency Matrix

This section is an introduction to the basic themes of the course.

Definition 1.1.1. A simple undirected graph G = (V ,E) consists of a non-empty set V of vertices and a
set E of unordered pairs of distinct elements of V , called edges.

It is useful, and usual, to think a graph as a picture, in which the vertices are depicted with
dots and the edges are represented by lines between the relevant pairs of dots. For example

v1 v2

v3 v4

v5
v6

A directed graph is similar, except that edges are ordered instead of unordered pairs of vertices.
In pictures, the ordering is indicated by an arrow pointing from the initial vertex of the edge to
the terminal vertex. Other variants on the definition allow loops (edges from a vertex to itself)
or multiple edges between the same pair of vertices. Graph Theory is the mathematical study of
graphs and their variants. The subject has lots of applications to the analysis of situations in which
members or subgroups of some population are interacting with each other in different ways, for
example to the study of (e.g. electrical, traffic, social) networks.

Graphs can be infinite or finite, but in this course we will only consider finite graphs. An
undirected graph is connected if it is all in one piece. In general the connected pieces of a graph
are called components. Given a graph G, the numerical parameters describing G that you might
care about include things like

• the order (the number of vertices);

• the number of edges (anything from zero to
�
n
2

�
for a simple graph of order n);

• the number of connected components;

• the maximum (or minimum, or average) vertex degree - the degree of a vertex is the number
of edges incident with that vertex;

• if G is connected, its diameter - this is the distance between a pair of vertices that are furthest
apart in G;
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• the length of the longest cycle;

• the size of the largest clique;

• the size of the largest independent set;

• if G is connected, its vertex-connectivity - the minimum number of vertices that must be
deleted to disconect the graph;

• if G is connected, its edge-connectivity - the minimum number of edges that must be deleted
to disconnect the graph;

• the list goes on . . .

Thinking about graphs as pictures is definitely a very useful conceptual device, but it can be
a bit misleading too. If you are presented with a picture of a graph with 100 vertices and lots
of edges, and it is not obvious from the picture that the graph is disconnected, then deciding by
looking at the picture whether the graph is connected is not at all easy (for example). We need
some systematic ways of organising the information encoded in graphs so that we can interpret
it. Luckily the machinery of linear algebra turns out to be extremely useful.

Definition 1.1.2. Let G be a graph with vertex set {v1, . . . , vn}. The adjacency matrix of G is the n× n
matrix that has a 1 in the (i, j)-position if there is an edge from vi to vj in G and a 0 in the (i, j)-position
otherwise.

Examples

1. An undirected graph and its adjacency matrix.

v1 v2

v3 v4

v5
v6

A =




0 1 1 0 0 0
1 0 1 0 1 1
1 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
0 1 0 0 1 0




2. A directed graph and its adjacency matrix.

v3 v4

v5
v6

v1 v2

A =




0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 1 0
1 0 0 0 0 0
0 0 1 1 0 1
1 0 0 0 0 0




Notes

1. The adjacency matrix is symmetric (i.e. equal to its transpose) if the graph is undirected.

2. The adjacency matrix has zeros on its main diagonal (unless the graph has loops).

3. A graph can easily be reconstructed from its adjacency matrix.
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4. The adjacency matrix of a graph G depends on a choice of ordering of the vertices of G (so
technically we should talk about the adjacency matrix with respect to a particular ordering).
The adjacency matrices A and A � of the same graph G with respect to different orderings
are related by permutation similarity, i.e.

A � = P−1AP,

where P is a permutation matrix - i.e. a (0, 1)-matrix with exactly one entry in each row and
column equal to 1. Note that a permutation matrix is orthogonal, its inverse is equal to its
transpose (more on that later).
Exercise: Prove the above assertion about the connection between adjacency matrices corre-
sponding to different orderings.

Given a graph G, its adjacency matrix is nothing more than a table that records where the edges
are in the graph. It happens to be a matrix, but its definition does not involve anything to do with
matrix algebra. So there is no good reason to expect that applying the usual considerations of
matrix algebra (matrix multiplication, diagonalization, eigenvalues, rank etc) to A would give us
anything meaningful in terms of the graph G. However it does. The first reason for that is the
following theorem, which describes what the entries of the positive integer powers of A tell us
about the graph G.

Theorem 1.1.3. Let A be the adjacency matrix of a simple graph G on vertices v1, v2, . . . , vn. Let k be a
positive integer. Then the entry in the (i, j)-position of the matrix Ak is the number of walks of length k
from vi to vj in G.

Proof. We use induction on k. The theorem is clearly true in the case k = 1, since the (i, j)-entry is
1 if there is a walk of length 1 from vi to vj (i.e. an edge), and 0 otherwise.

Assume that the theorem holds for all positive integers up to k− 1. Then

(Ak)ij =

n�

r=1

(Ak−1)irArj.

We need to show that this is the number of walks of length k from vi to vj in G. By the induction
hypothesis, (Ak−1)ir is the number of walks of length k − 1 from vi to vr. For a vertex vr of G,
think of the number of walks of length k from vi to vj that have vr as their second-last vertex. If
vr is adjacent to vj, this is the number of walks of length k − 1 from vi to vr. If vr is not adjacent
to vj, it is zero. In either case it is (Ak−1)irArj, since Arj is 1 or 0 according as vr is adjacent to
vj or not. Thus the total number of walks of length k from vi to vj is the sum of the expressions
(Ak−1)irArj over all vertices vr of G, which is exactly (Ak)ij.

An immediate consequence of Theorem 1.1.3 is that the trace of the matrix A2 (i.e. the sum
of the diagonal entries) is the sum over all vertices vi of the number of walks of length 2 from vi
to vi. The number of walks of length 2 from a vertex to itself is just the number of edges at that
vertex, or the vertex degree. So

trace(A2) =
�

v∈V

deg(v) = 2|E|.

It is a well known and very useful fact that in a graph without loops, the sum of the vertex
degrees is twice the number of edges - essentially this is the number of “ends of edges” - every
edge contributes twice to

�
v∈V deg(v).

In A3, the entry in the (i, i)-position is the number of walks of length 3 from vi to itself. This
is twice the number of 3-cycles in G that include the vertex vi (why twice?). Thus, in calculating
the trace of A3, every 3-cycle (or triangle) in the graph, contributes six times - twice for each of its
three vertices. Thus

trace(A3) = 6 × (number of triangles in G).
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Exercise: this interpretation of the trace of Ak as counting certain types of walks in G does not
work so well from k = 4 onwards - why is that?

A reason for focussing on the trace of powers of the adjacency matrix at this stage is that it
opens a door to the subject of spectral graph theory. Recall the following facts about the trace of a
n× n matrix A (these will be justified in the next section).

1. Let the eigenvalues of A (i.e. the roots of the polynomial det(λIn − A)) be λ1, . . . , λn (not
necessarily distinct). Then trace(A) = λ1 + λ2 + · · · + λn. So the sum of the eigenvalues
is equal to the sum of the diagonal entries. The eigenvalues are generally not equal to the
diagonal entries, but they are for example if A is upper or lower triangular.

2. The eigenvalues of A2 are λ2
1, λ2

2, . . . , λ2
n, and the trace of A2 is the sum of the squares of the

eigenvalues of A.

3. In general, for a positive integer k,

trace(Ak) =

n�

i=1

(λi)
k.

The central question of spectral graph theory asks what the spectrum (i.e. the list of eigenval-
ues) of the adjacency matrix A of a graph G tells us about the graph G itself. The observations
above tell us that the answer is not nothing. We know that if spec(A) = [λ1, . . . , λn], then

• �n
i=1 λ

2
i is twice the number of edges in G.

• �n
i=1 λ

3
i is six times the number of triangles in G.

This means that the adjacency spectrum of a graph G “knows” the number of edges in G and the
number of triangles in G (and obviously the number of vertices in G). To put that another way, if
two graphs of order n have the same spectrum, they must have the same number of edges and the
same number of triangles.

Definition 1.1.4. Two graphs G and H are called cospectral if their adjacency matrices have the same
spectrum.

Below is a pair of cospectral graphs that do not have the same number of cycles of length
4; G has 5 and H has 6. Each has 7 vertices, 12 edges and 6 triangles. Each has spectrum
[−2,−1,−1, 1, 1, 1 +

√
7, 1 −

√
7].

G H

Exercise: Why does it not follow from the reasoning for edges and triangles above that cospectral
graphs must have the same number of 4-cycles?

Something else that the adjacency spectrum does not “know” about a graph is its number
of components. The following is an example of a pair of cospectral graphs of order 5, one is
connected and one is not.

G H
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The adjacency matrices are

AG =




0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0




, AH =




0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0




It is easily observed that both AG and AH have rank 2, so each has zero occurring at least three
times as an eigenvalue. By considering

AHv =




0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0







a
b
c
d
e




=




b+ c+ d+ e
a
a
a
a




,

we find that AHv = λv only if a = λb = λc = λd = λe and b+ c+ d+ e = λa. If λ �= 0 this means
b = c = d = e and λa = λ2b = 4b. So λ2 = 4 and the possible values of λ are 2 and −2. Thus
spec(AH) = [0, 0, 0, 2,−2].

On the other hand AG also has rank 2 and so has zero occurring (at least) three times as an
eigenvalue. Because the first row of AG is a zero row, and the other row sums in AG are all equal
to 2, it follows that 2 is an eigenvalue of AG, with corresponding eigenvector having 0 in the first
position and 1 in the other four. Since the sum of the eigenvalues is the trace of AG which is zero,
the fifth eigenvalue must be −2. So spec(AG) = [0, 0, 0, 2,−2] = spec(AH).

We have shown that AH and AG are cospectral, but G has two connected components and H
has one. So the number of connected components in a graph is not determined by the adjacency
spectrum.

We finish off this section with a famous example of a theorem in graph theory that can be
proved using analysis of the spectrum of an adjacency matrix.

Theorem 1.1.5 (Erdös-Rényi-Sós, the Friendship Theorem (1966)). Let G be a finite graph on at least
three vertices, in which every pair of vertices has exactly one common neighbour (the “friendship property”).
Then there is a vertex in G that is adjacent to all the others.

Remarks

1. The theorem is called the Friendship Theorem because it can be expressed by the statement
that in a group of people in which every pair has exactly one mutual friend, there is a person
who is friends with everyone (the “politician”).

2. After we prove the theorem it is relatively easy to describe the finite graphs which have the
property - they are the “windmills”, also called “friendship graphs”. The windmill Wr has
2r+ 1 vertices and consists of r triangles, all sharing one vertex but otherwise disjoint.

W4

W1
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3. A graph is regular if all of its vertices have the same degree.

Proof. Our proof has two steps - the first is to show that a counterexample to the theorem would
have to be a regular graph, and the second is to consider what the hypotheses would say about
the square of the its adjacency matrix.

Let G be a graph satisfying the hypothesis of the theorem, and suppose that no vertex of G is
adjacent to all others. Let u and v be two non-adjacent vertices of G. Write k = deg(u) and let
x1, . . . , xk be the neighbours of u, where x1 is the unique common neighbour of u and v. For each
i in the range 1 to k, let y1 be the unique common neighbour of v and xi. The yi are all distinct,
since if two of them coincided then this vertex would have more than one common neighbour
with u. Thus v has degree at least k and degu � deg v. The same argument with the roles of u
and v reversed shows that deg v � degu, so we conclude that deg v = k, and that degu � = deg v �

whenever u � and v � are non-adjacent vertices of G.
Now let w be any vertex of G, other than x1. Since u and v have only one common neighbour,

w is not adjacent to both u and v, so there is a vertex of degree k to which it is not adjacent. Thus
degw = k by the above argument. Now all vertices of G have degree k except possibly x1. If there
is a vertex of G to which x1 is non-adjacent, then this vertex has degree k and hence so does x1.
The alternative is that x1 is adjacent to all other vertices of G which means that the conclusion of
the theorem is satisfied. We have shown that any counterexample to the statement of the theorem
would have to be a regular graph.

Now we assume that G is such a counterexample and that G is regular of degree k. Let n be
the order (number of vertices) of G. Let u be a vertex of G. Each of the other n − 1 vertices of G
is reachable from u by a unique path of length 2. The number of such paths emanating from u is
k(k − 1), since there are k choices for the first edge and then k − 1 for the second. It follows that
we can express n in terms of k:

k(k− 1) = n− 1 =⇒ n = k2 − k+ 1.

Now let A be the adjacency matrix of G and consider the matrix A2. Each entry on the diagonal
of A2 is k, the number of walks of length 2 from a vertex to itself. Each entry away from the main
diagonal is 1 - the number of walks of length 2 between two distinct vertices. Thus

A2 = (k− 1)I+ J,

where I is the identity matrix and J is the matrix whose entries are all equal to 1 (this is fairly
standard notation in combinatorics). We consider the eigenvalues of A2. These are the roots of
the characteristic polynomial

det(λI− (k− 1)I− J) = det ((λ− k+ 1)I− J) .

Thus the number λ1 is an eigenvalue of A2 if and only if λ1 − k+ 1 is an eigenvalue of J, and these
respective eigenvalues of A2 and J occur with the same multiplicities. We can obtain the spectrum
of A2 by adding k−1 to every element in the spectrum of J. The spectrum of J is easy to determine
directly - it has rank 1 and so has 0 occurring as an eigenvalue n − 1 times. Its row sums are all
equal to n and so it has n occurring (once) as an eigenvalue. Thus

spec(J) = [0, 0, . . . , 0,n] =⇒ spec(A2) = [k− 1, k− 1, . . . ,k− 1,n+ k− 1].

Note that n + k − 1 = k2, so spec(A) = [k − 1,k − 1, . . . ,k − 1, k2]. Now the eigenvalues of A are
square roots of the eigenvalues of A2. We know that k is an eigenvalue of A since every row sum
in A is equal to k; this occurs once. Every other eigenvalue of A is either

√
k− 1 or −

√
k− 1. Say

that
√
k− 1 occurs r times and −

√
k− 1 occurs s times, where r+ s = n− 1. Finally we make use

of the fact that trace(A) = 0, which means

k+ (r− s)
�
(k− 1) = 0.

Rearranging this equation gives k2 = (s − r)2(k − 1)2, which means that k − 1 divides k2. Since
k− 1 also divides k2 − 1, it follows that k− 1 = 1 which means that k = 2 and n = k2 − k+ 1 = 3.
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In this case G is the graph K3 (or W1) consisting of a single triangle. This is the only regular graph
satisfying the hypothesis of the theorem, and it also satisfies the conclusion (and it is a windmill).
By the first half of the proof, every non-regular graph that possesses the friendship propery has a
vertex adjacent to all others, so we have proved the theorem.

The Friendship Theorem is a famous example of the use of matrix and specifically spectral
techniques to solve a purely combinatorial problem. The proof here is essentially the original one
of Erdös, Rényi and Sós. There are several proofs in the literature, most of which involve con-
sideration of matrix spectra in some way. For many years there was interest in finding a “purely
combinatorial” proof. Some do exist now in the literature, see for example “The Friendship The-
orem” by Craig Huneke, in the February 2002 volume of the American Mathematical Monthly
(avaiable on JSTOR). Another interesting feature of this theorem is that it is no longer true if the
condition that G is finite is dropped - there exist examples of infinite “friendship graphs” with no
politician.
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