
Chapter 2

Real Symmetric Matrices

2.1 Special properties of real symmetric matrices

A matrix A ∈ Mn(C) (or Mn(R)) is diagonalizable if it is similar to a diagonal matrix. If this
happens, it means that there is a basis of Cn with respect to which the linear transformation of Cn

defined by left multiplication by A has a diagonal matrix. Every element of such a basis is simply
multiplied by a scalar when it is multiplied by A, which means exactly that the basis consists of
eigenvectors of A.

Lemma 2.1.1. A matrix A ∈ Mn(C) is diagonalizable if and only if Cn possesses a basis consisting of
eigenvectors of A.

Not all matrices are diagonalizable. For example A =

�
1 1
0 1

�
is not. To see this note that 1

(occurring twice) is the only eigenvalue of A, but that all eigenvectors of A are scalar multiples of�1
0

�
, so C2 (or R2) does not contain a basis consisting of eigenvectors of A, and A is not similar to

a diagonal matrix.
We note that a matrix can fail to be diagonalizable only if it has repeated eigenvalues, as the

following lemma shows.

Lemma 2.1.2. Let A ∈ Mn(R) and suppose that A has distinct eigenvalues λ1, . . . , λn in C. Then A is
diagonalizable.

Proof. Let vi be an eigenvector of A corresponding to λi. We will show that S = {v1, . . . , vn} is a
linearly independent set. Since v1 is not the zero vector, we know that {v1} is linearly independent.
If S is linearly dependent, let k be the least for which {v1, . . . , vk} is linearly dependent. This means
that {v1, . . . , vk−1} is a linearly independent set and

vk = a1v1 + · · ·+ ak−1vk−1

for some ai ∈ C, not all zero. Multiplying this equation on the left separately by A and by λk
gives

λkvk = a1λ1v1 + a2λ2v2 + ak−1λk−1vk−1

a1λkv1 + a2λkv2 + ak−1λkvk−1

=⇒ 0 = a1(λ1 − λk)v1 + a2(λ2 − λk) + · · ·+ ak(λk−1 − λk)vk−1.

Since the complex numbers λi − λk are non-zero for i = 1, . . . , k − 1 and at least one of these ai

is non-zero, the above is an expression for the zero vector as a nontrivial linear combination of
v1, . . . , vk−1, contrary to the choice of k. We conclude that S is linearly independent and hence that
it is a basis of Cn.
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Definition 2.1.3. A matrix A ∈ Mn(R) is symmetric if it is equal to its transpose, i.e. if Aij = Aji for
all i and j.

Symmetric matrices arise naturally in various contexts, including as adjacency matrices of
undirected graphs. Fortunately they have lots of nice properties. To explore some of these we
need a slightly more general concept, that of a complex Hermitian matrix.

Definition 2.1.4. Let A ∈ Mn(C). The Hermitian transpose, or conjugate transpose of A is the
matrix A∗ obtained by taking the transpose of A and then taking the complex conjugate of each entry. The
matrix A is said to be Hermitian if A = A∗.

Notes

1. Example: If A =

�
2 + i 4 − i

3 3 − i

�
, then A∗ =

�
2 − i 3
4 + i 3 + i

�

2. The Hermitian transpose of A is equal to its (ordinary) transpose if and only if A ∈ Mn(R).
In some contexts the Hermitian transpose is the appropriate analogue in C of the concept of
transpose of a real matrix.

3. If A ∈ Mn(C), then the trace of the product A∗A is the sum of all the entries of A, each
multiplied by its own complex conjugate (check this). This is a non-negative real number
and it is zero only if A = 0. In particular, if A ∈ Mn(R), then trace(ATA) is the sum of the
squares of all the entries of A.

4. Suppose that A and B are two matrices for which the product AB exists. Then (AB)T =
BTAT and (AB)∗ = B∗A∗ (it is routine but worthwile to prove these statements). In particu-
lar, if A is any matrix at all, then

(ATA)T = AT (AT )T = ATA, and (A∗A)∗ = A∗(A∗)∗ = A∗A,

so ATA and A∗A are respectively symmetric and Hermitian (so are AAT and AA∗).

The following theorem is the start of the story of what makes real symmetric matrices so
special.

Theorem 2.1.5. The eigenvalues of a real symmetric matrix are all real.

Proof. We will prove the stronger statement that the eigenvalues of a complex Hermitian matrix
are all real. Let A be a Hermitian matrix in Mn(C) and let λ be an eigenvalue of A with corre-
sponding eigenvector v. So λ ∈ C and v is a non-zero vector in Cn. Look at the product v∗Av.
This is a complex number.

v∗Av = v∗λv = λv∗v.

The expression v∗v is a positive real number, since it is the sum of the expressions v̄ivi over all
entries vi of v.

We have not yet used the fact that A∗ = A.
Now look at the Hermitian transpose of the matrix product v∗Av.

(v∗Av)∗ = v∗A∗(v∗)∗ = v∗Av.

This is saying that v∗Av is a complex number that is equal to its own Hermitian transpose, i.e.
equal to its own complex conjugate. This means exactly that v∗Av ∈ R.

We also know that v∗Av = λv∗v, and since v∗v is a non-zero real number, this means that
λ ∈ R.

So the eigenvalues of a real symmetric matrix are real numbers. This means in particular that
the eigenvalues of the adjacency matrix of an undirected graph are real numbers, they can be
arranged in order and we can ask questions about (for example) the greatest eigenvalue, the least
eigenvalue, etc.
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Another concept that is often mentioned in connection with real symmetric matrices is that
of positive definiteness. We mentioned above that if A ∈ Mm×n(R), then ATA is a symmetric
matrix. However not every symmetric matrix has the form ATA, since for example the entries on
the main diagonal of ATA do not. It turns out that those symmetric matrices that have the form
ATA (even for a non-square A) can be characterized in another way.

Definition 2.1.6. Let A be a symmetric matrix in Mn(R). Then A is called positive semidefinite (PSD)
if vTAv � 0 for all v ∈ Rn. In addition, if vTAv is strictly positive whenever v �= 0, then A is called
positive definite (PD).

Notes

1. The identity matrix In is the classical example of a positive definite symmetric matrix, since
for any v ∈ Rn, vT Inv = vTv = v · v � 0, and v · v = 0 only if v is the zero vector.

2. The matrix
�

1 2
2 1

�
is an example of a matrix that is not positive semidefinite, since

�
−1 1

�� 1 2
2 1

��
−1

1

�
= −2.

So positive (semi)definite is not the same thing as positive - a symmetric matrix can have all
of its entries positive and still fail to be positive (semi)definite.

3. A symmetric matrix can have negative entries and still be positive definite, for example the

matrix A =

�
1 −1

−1 2

�
is SPD (symmetric positive definite). To see this observe that for

real numbers a and b we have

�
a b

�� 1 −1
−1 2

��
a
b

�
= a2 − ab− ab+ 2b2 = (a− b)2 + b2.

Since (a− b)2 + b2 cannot be negative and is zero only if both a and b are equal to zero, the
matrix A is positive definite.

The importance of the concept of positive definiteness is not really obvious at first glance, it
takes a little bit of discussion. We will defer this discussion for now, and mention two observations
related to positive (semi)definiteness that have a connection to spectral graph theory.

Lemma 2.1.7. The eigenvalues of a real symmetric positive semidefinite matrix are non-negative (positive
if positive definite).

Proof. Let λ be an eigenvalue of the real symmetric positive semidefinite matrix A, and let v ∈ Rn

be a corresponding eigenvector. Then

0 � vTAv = vTλv = λvTv.

Thus λ is nonnegative since vTv is a positive real number.

Lemma 2.1.8. Let B ∈ Mn×m(R) for some positive integers m and n. Then the symmetric matrix
A = BBT in Mn(R) is positive semidefinite.

Proof. Let u ∈ Rn. Then

uTAu = uTBBTu = (uTB)(BTu) = (BTu)T (BTu) = (BTu) · (BTu) � 0,

so A is positive semidefinite.

The next section will contain a more detailed discussion of positive (semi)definiteness, includ-
ing the converses of the two statements above. First we digress to look at an application of what
we know so far to spectral graph theory.
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Definition 2.1.9. Let G be a graph. The line graph of G, denoted by L(G), has a vertex for every edge
of G, and two vertices of L(G) are adjacent if and only if their corresponding edges in G share an incident
vertex.

Example 2.1.10. K4 (left) and its line graph (right).

Choose an edge of K4. Since each of its incident vertices has degree 3, there are four other edges
with which it shares a vertex. So the vertex that represents it in L(K4) has degree 4. In general, if
a graph G is regular of degree k, then L(G) will be regular of degree 2k − 2. For any graph G, a
vertex of degree d in G corresponds to a copy of the complete graph Kd within L(G).

Not every graph can be a line graph. For example, a vertex of degree 3 in a line graph L(G)
must have the property that at least two of its neighbours are adjacent to each other, because it
corresponds to an edge e of the graph G that shares a vertex with three other edges. At least two
of these three must be incident with the same vertex of e. Thus (for example) L(G) can be a tree
or forest only if L(G) has no vertex of degree exceeding 2, which means that G is a collection of
disjoint paths (in this case L(G) is also a collection of disjoint paths, of lengths one less than the
paths of G itself). The cycle Cn is its own line graph. The line graph of the path Pn is Pn−1. The
line graph of the star on n vertices (which has one vertex of degree n− 1 and n− 1 of degree 1) is
the complete graph Kn.

Line graphs all share the following spectral property, which is remarkable easy to prove using
what we already know about positive semidefinite matrices.

Theorem 2.1.11. Let L(G) be the line graph of a graph G, and let A(L(G)) be the adjacency matrix of
L(G). Then every eigenvalue of L(G) is at least equal to −2.

To prove Theorem 2.1.11 we need one more device that links matrices to graphs.

Definition 2.1.12. Let G be a graph with n vertices and m edges. The incidence matrix of G, denoted
B(G), is the m × n (0, 1)-matrix with rows indexed by the edges of G and columns by the vertices of G,
that has a 1 in the (i, j)-position if and only if the edge labelling Row i is incident with the vertex labelling
Column j.

The incidence matrix depends on a choice of ordering of both the vertices and the edges obvi-
ously.

Example 2.1.13. A graph and its incidence matrix.

a

b

c

d

e

f

1

2

3

4

5

6

7

8




1 1 0 0 0 0
0 1 1 0 0 0
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 0 1 1




Each row of an incidence matrix has two 1s, and the number of 1s in a column is the degree of
the corresponding vertex.
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Now suppose that B is the incidence matrix of a graph G, and consider the positive semidefi-
nite matrices BBT and BTB.

The rows and columns of BBT are indexed by the edges of G. The entry in the (i, j) position of
BBT is the scalar product of Rows i and j of B, each of which has exactly two entries equal to 1. If
i = j then the entry in the (i, i) position of BBT is 2. If i �= j, then Rows i and j of B are different
since they represent different edges ei and ej respectively of G. In this case (BBT )ij is equal to 1
if the edges ei and ej have a vertex in common, and 0 otherwise. Thus an off-diagonal entries of
BBT is 1 or 0 according as the edges of G labelling its row and column share an incident vertex or
not. The diagonal entries are all 2. Thus BBT − 2I is exactly the adjacency matrix of the line graph
of G, or

BBT = 2I+A(L(G)).

Theorem 2.1.14. Let L(G) be the line graph of a graph G, and let λ be the least eigenvalue of the adjacency
matrix of L(G). The λ � −2.

Proof. From the above description of BBT we know that 2I + A(L(G)) is a positive semidefinite
matrix and so its eigenvalues are all non-negative. Moreover the spectrum of 2I + A(L(G)) are
obtained by adding 2 to each item in the spectrum of A(L(G)), so λ+ 2 � 0 =⇒ λ � −2.

It is not true unfortunately that a graph must be a line graph if all eigenvalues of its adjacency
matrix are at least −2.

Now we turn to the matrix BTB. The rows and columns of this matrix are labelled by the
vertices of G and the entry in the (i, j) positive is the scalar product of Column i and Column j
of B. If i = j, this is the degree of Vertex i. If i �= j, then Column i and Column j have a 1 in the
same position if and only if Vertex i and Vertexj belong to the same edge. This happens in exactly
one position if the vertices i and j are adjacent in G, and in no position if they are non-adjacent.
Thus the entry in the off-diagonal position (i, j) of BTB is 1 if Vertices i and j are adjacent in G and
0 otherwise. This means that away from the main diagonal, BTB coincides with the adjacency
matrix of G. Putting all of this together gives

BTB = Δ+A(G),

where A(G) is the adjacency matrix of G and Delta is the diagonal matrix whose entry in the
(i, i)-position is the degree of vertex vi. We have shown the the matrix Δ + A(G) is positive
semidefinite for every graph G. In the special case where G is regular of degree k, this shows that
every eigenvalue of G is at least −k.
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