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Basic questions

What is the maximum possible dimension of a linear (or
affine) space of (any, or symmetric, or skew-symmetric . . . )
matrices in Mn(F) in which

all (non-zero) elements have the same rank, or

the ranks of (non-zero) elements all lie between specified

bounds.

How do examples achieving these bounds arise?
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Example - spaces of nonsingular matrices

Suppose that A and B are invertible matrices in GL(n,C), and that

λ ∈ C. Then

det(λA + B) = det(A) det(λIn + A−1B)

=⇒ det(λA + B) = 0 ⇐⇒ det(λIn + A−1B) = 0.

Since det(λIn + A−1B) is a polynomial of degree n in λ, it has a

root in C.

Theorem

The maximum possible dimension of a space of nonsingular

matrices in Mn(C) is 1.

If n is odd, the maximum possible dimension of a space of

nonsingular matrices in Mn(R) is 1.
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Smaller fields

Suppose F is a field that admits a field extension K of degree n, so

that

dimF(K) = n.

For each α ∈ K, define fα : K→ K by

fα(x) = αx .

Then fα is an invertible F-linear transformation of K.

Let Mα be the matrix of this transformation with respect to some

specified F-basis of K. Then

α→ Mα

is an F-linear isomorphism of fields and

{Mα : α ∈ K}

is a space of non-singular matrices of dimension n in Mn(F).
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On the other hand . . .

If {A1, . . . ,Ak} are linearly independent elements of a space of

nonsingular matrices in Mn(F), then the first rows of these

matrices must be linearly independent over F. Thus the dimension

of a space of nonsingular matrices in Mn(F) cannot exceed n.

If X ⊂ Mn(F) is a space of invertible matrices of dimension n, then

there is a isomorphism φ : Fn → X of F-vector spaces. Defining a

multiplication · on Fn by u · v = φ(u)v gives Fn the structure of a

presemifield over F. Hence

Theorem

There exists an n-dimensional subspace of invertible matrices in

Mn(F) if and only if there exists a semifield of dimension n over F.

A semifield satisfies all the axioms of a field except possibly

commutativity and associativity of multiplication.
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Nonsingular spaces over R - the Radon-Hurwitz numbers

All semifields over R have dimension 1 (real field), 2 (complex

field), 4 (quaternion division algebra) or 8 (octonion semifield).

For a natural number n, define ρ(n) as follows.

2u is the highest power of 2 that divides n.

a and b are respectively the quotient and remainder on

dividing u by 4.

ρ(n) = 8a + 2b.

The numbers ρ(n) are the Radon-Hurwitz numbers.

u 0 1 2 3 4 5 6 7 8 9 10 11

ρ(n) 1 2 4 8 9 10 12 16 17 18 20 24
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Nonsingular spaces over R - the Radon-Hurwitz numbers

All semifields over R have dimension 1 (real field), 2 (complex

field), 4 (quaternion division algebra) or 8 (octonion semifield).

For a natural number n, define ρ(n) as follows.

2u is the highest power of 2 that divides n.

a and b are respectively the quotient and remainder on

dividing u by 4.

ρ(n) = 8a + 2b.

The numbers ρ(n) are the Radon-Hurwitz numbers.

Theorem (Adams,Radon,Hurwitz,. . . )

The maximum dimension of a nonsingular subspace of Mn(R) is

ρ(n).

Rachel Quinlan rachel.quinlan@nuigalway.ie Special spaces of matrices



How to produce a 9-d nonsingular space in M16(R)

Let W be a 8-dimensional nonsingular subspace of M8(R)

(constructed from the octonion semifield). For each A ∈W and

λ ∈ R, define a linear transformation τA,λ : R8 ⊕R8 → R8 ⊕R8 by

τA,λ(x , y) = (Ay + λx ,AT x − λy).

Then τA,λ is an invertible linear transformation of R16, for suppose

for some (x , y) ∈ R8 ⊕ R8 that Ay + λx = AT x − λy = 0. Then

xT Ay = −λxT x

xT Ay = λyT y

=⇒ λ(xT x + yT y) = 0 =⇒ λ = 0.

Then A is singular and so A = 0. Hence {τA,λ : A ∈W , λ ∈ R} is

(isomorphic to) a 9-dimensional nonsingular subspace of M16(R).
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Vector fields on spheres (Adams, 1962)

Sn−1 = {x ∈ Rn : ||x || = 1}: the (n − 1)-sphere.

A (continuous) vector field on Sn−1 is a (continuous) mapping

φ : Sn−1 → Rn with the property that v · φ(v) = 0 for all

v ∈ Sn−1.

Vector fields φ1, φ2, . . . , φk on Sn−1 are called linearly independent

if {φ1(v), φ2(v), . . . , φk(v)} is a linearly independent subset of Rn

for every v ∈ Sn−1.

Question What is the maximum number of linearly independent

continuous vector fields on Sn−1?

Theorem (Adams, 1962)

The answer is ρ(n)− 1.
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The connection with nonsingular spaces

Suppose that {A1, . . . ,Aρ(n)} is a basis for a nonsingular subspace

X of Mn(R). Let X ′ denote the subspace spanned by

A2, . . . ,Aρ(n), so dim X ′ = ρ(n)− 1.

If A ∈ X ′ and A 6= 0, note that A−1
1 A has no real eigenvalue.

For i = 2, . . . , ρ(n), write Bi = A−1
1 Ai .

Define vector fields φ2, . . . , φρ(n) on Sn−1 by

φi (v) = projv⊥ Bi (v).

Then these φi are linearly independent vector fields on Sn−1.

Suppose for some v ∈ Sn−1 and ci ∈ R that

c2φ2(v) + · · ·+ cρ(n)φρ(n)(v) = 0.

Then v is an eigenvector of A−1
1 A, where

A = (c2A2 + · · ·+ cρ(n)Aρ(n)) ∈ X ′, hence A = 0 and each

ci = 0.
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The case of affine spaces

Theorem (Meshulam 1989; Quinlan 2011; McTigue & Quinlan

2011; de Seguins Pazzis 2012; . . . )

For any field F, the maximum possible dimension of an affine

subspace of Mn(F) in which every element is nonsingular is n(n−1)
2 .

Examples

1 In + SUTn(F), the set of upper triangular matrices having 1 in

all diagonal positions.

2 If F is a formally real field (e.g. R), In + An(F), where

An(F) = {B ∈ Mn(F) : BT = −B} is the space of

skew-symmetric matrices.

Rachel Quinlan rachel.quinlan@nuigalway.ie Special spaces of matrices



Some related theorems

Definiton For a linear subspace X of Mm×n(F), define X⊥ by

X⊥ = {B ∈ Mn×m(F) : trace(AB) = 0 ∀ A ∈ X}.

Then X⊥ is a linear space and dim(X ) + dim(X⊥) = mn.

Note For a linear subspace X of Mn(F), the affine subspace In + X

consists of nonsingular matrices if and only if no element of X

possesses a non-zero eigenvalue in F.
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Some related theorems

Definiton For a linear subspace X of Mm×n(F), define X⊥ by

X⊥ = {B ∈ Mn×m(F) : trace(AB) = 0 ∀ A ∈ X}.

Then X⊥ is a linear space and dim(X ) + dim(X⊥) = mn.

Theorem (Duality Theorem, Version 1)

Every element of the affine space In + X is non-singular if and only

if no element of X has a non-zero eigenvalue in X , if and only if

every non-zero vector in Fn occurs as the rowspace of some

element of non-zero trace in X⊥.

The minimum possible dimension of X⊥ is n(n+1)
2 .

Rachel Quinlan rachel.quinlan@nuigalway.ie Special spaces of matrices



Some related theorems

Definiton For a linear subspace X of Mm×n(F), define X⊥ by

X⊥ = {B ∈ Mn×m(F) : trace(AB) = 0 ∀ A ∈ X}.

Then X⊥ is a linear space and dim(X ) + dim(X⊥) = mn.

Theorem (Duality Theorem, Version 2)

Let C ∈ GLn(F). Every element of the affine space C + X is

nonsingular (or has rank n) if and only if every one-dimensional

subspace of Fn occurs as the rowspace of some element of

X⊥\X⊥ ∩ C⊥.

The minimum possible dimension of X⊥ is n(n+1)
2 .
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Some related theorems

Definiton For a linear subspace X of Mm×n(F), define X⊥ by

X⊥ = {B ∈ Mn×m(F) : trace(AB) = 0 ∀ A ∈ X}.

Then X⊥ is a linear space and dim(X ) + dim(X⊥) = mn.

Theorem (Duality Theorem, Version 3)

Let k ≤ n. Every element of the affine space In + X has rank at

least k if and only if no element of X has a non-zero eigenvalue in

F whose geometric multiplicity exceeds n − k;

if and only if every (n − k + 1)-dimensional subspace of Fn

contains the rowspace of some element of X⊥ of non-zero trace.

The minimum possible dimension of such an X⊥ is k(k+1)
2 .
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Some related theorems

Definiton For a linear subspace X of Mm×n(F), define X⊥ by

X⊥ = {B ∈ Mn×m(F) : trace(AB) = 0 ∀ A ∈ X}.

Then X⊥ is a linear space and dim(X ) + dim(X⊥) = mn.

Theorem (Duality Theorem, Version 4)

Let C ∈ Mn(F) and let k ≤ n. Every element of the affine space

C + X has rank at least k if and only if every

(n − k + 1)-dimensional subspace of Fn contains the rowspace of

some element of X⊥\X⊥ ∩ C⊥.

The minimum possible dimension of such an X⊥ is k(k+1)
2 .
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Some related theorems

Definiton For a linear subspace X of Mm×n(F), define X⊥ by

X⊥ = {B ∈ Mn×m(F) : trace(AB) = 0 ∀ A ∈ X}.

Then X⊥ is a linear space and dim(X ) + dim(X⊥) = mn.

Theorem (Duality Theorem, Version 5)

Let X be a subspace of Mm×n(F) and let C ∈ Mm×n(F). Let

k ≤ min(m, n). Then every element of the affine space C + X has

rank at least k if and only if every subspace of dimension m− k + 1

of Fm contains the rowspace of some element of X⊥\X⊥ ∩ C⊥.

The minimum possible dimension of such an X⊥ is k(k+1)
2 .
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Thank You

And thanks to the organisers!

Rachel Quinlan rachel.quinlan@nuigalway.ie Special spaces of matrices


