Special spaces of matrices

IMS Meeting 2013 NUI Maynooth

Rachel Quinlan rachel.quinlan@nuigalway.ie

National University of Ireland, Galway

August 27, 2013

- What is the maximum possible dimension of a linear (or affine) space of (any, or symmetric, or skew-symmetric ...) matrices in M_n(𝔅) in which
 - all (non-zero) elements have the same rank, or
 - the ranks of (non-zero) elements all lie between specified bounds.
- How do examples achieving these bounds arise?

Example - spaces of nonsingular matrices

Suppose that A and B are invertible matrices in $GL(n, \mathbb{C})$, and that $\lambda \in \mathbb{C}$. Then

$$det(\lambda A + B) = det(A) det(\lambda I_n + A^{-1}B)$$
$$\implies det(\lambda A + B) = 0 \iff det(\lambda I_n + A^{-1}B) = 0.$$

Since det($\lambda I_n + A^{-1}B$) is a polynomial of degree *n* in λ , it has a root in \mathbb{C} .

Theorem

- The maximum possible dimension of a space of nonsingular matrices in M_n(ℂ) is 1.
- If n is odd, the maximum possible dimension of a space of nonsingular matrices in M_n(ℝ) is 1.

Smaller fields

Suppose \mathbb{F} is a field that admits a field extension \mathbb{K} of degree *n*, so that

 $\dim_{\mathbb{F}}(\mathbb{K}) = n.$

For each $\alpha \in \mathbb{K}$, define $f_{\alpha} : \mathbb{K} \to \mathbb{K}$ by

 $f_{\alpha}(x) = \alpha x.$

Then f_{α} is an invertible \mathbb{F} -linear transformation of \mathbb{K} . Let M_{α} be the matrix of this transformation with respect to some specified \mathbb{F} -basis of \mathbb{K} . Then

 $\alpha \to M_{\alpha}$

is an $\mathbb F\text{-linear}$ isomorphism of fields and

 $\{M_{\alpha}: \alpha \in \mathbb{K}\}$

is a space of non-singular matrices of dimension n in $M_n(\mathbb{F})$.

On the other hand ...

If $\{A_1, \ldots, A_k\}$ are linearly independent elements of a space of nonsingular matrices in $M_n(\mathbb{F})$, then the first rows of these matrices must be linearly independent over \mathbb{F} . Thus the dimension of a space of nonsingular matrices in $M_n(\mathbb{F})$ cannot exceed n.

If $X \subset M_n(\mathbb{F})$ is a space of invertible matrices of dimension n, then there is a isomorphism $\phi : \mathbb{F}^n \to X$ of \mathbb{F} -vector spaces. Defining a multiplication \cdot on \mathbb{F}^n by $u \cdot v = \phi(u)v$ gives \mathbb{F}^n the structure of a presemifield over \mathbb{F} . Hence

Theorem

There exists an n-dimensional subspace of invertible matrices in $M_n(\mathbb{F})$ if and only if there exists a semifield of dimension n over \mathbb{F} .

A semifield satisfies all the axioms of a field except possibly commutativity and associativity of multiplication Rachel Quinlan rachel.guinlan@nuigalway.ie Special spaces of matrices All semifields over \mathbb{R} have dimension 1 (real field), 2 (complex field), 4 (quaternion division algebra) or 8 (octonion semifield). For a natural number *n*, define $\rho(n)$ as follows.

- 2^u is the highest power of 2 that divides n.
- a and b are respectively the quotient and remainder on dividing u by 4.

$$\bullet \ \rho(n) = 8a + 2^b.$$

The numbers $\rho(n)$ are the Radon-Hurwitz numbers.

u
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

$$\rho(n)$$
 1
 2
 4
 8
 9
 10
 12
 16
 17
 18
 20
 24

Nonsingular spaces over ${\mathbb R}$ - the Radon-Hurwitz numbers

All semifields over \mathbb{R} have dimension 1 (real field), 2 (complex field), 4 (quaternion division algebra) or 8 (octonion semifield). For a natural number *n*, define $\rho(n)$ as follows.

- 2^u is the highest power of 2 that divides *n*.
- a and b are respectively the quotient and remainder on dividing u by 4.

•
$$\rho(n) = 8a + 2^{b}$$
.

The numbers $\rho(n)$ are the Radon-Hurwitz numbers.

Theorem (Adams, Radon, Hurwitz, ...)

The maximum dimension of a nonsingular subspace of $M_n(\mathbb{R})$ is $\rho(n)$.

How to produce a 9-d nonsingular space in $M_{16}(\mathbb{R})$

Let W be a 8-dimensional nonsingular subspace of $M_8(\mathbb{R})$ (constructed from the octonion semifield). For each $A \in W$ and $\lambda \in \mathbb{R}$, define a linear transformation $\tau_{A,\lambda} : \mathbb{R}^8 \oplus \mathbb{R}^8 \to \mathbb{R}^8 \oplus \mathbb{R}^8$ by

$$\tau_{\mathcal{A},\lambda}(x,y) = (\mathcal{A}y + \lambda x, \mathcal{A}^T x - \lambda y).$$

Then $\tau_{A,\lambda}$ is an invertible linear transformation of \mathbb{R}^{16} , for suppose for some $(x, y) \in \mathbb{R}^8 \oplus \mathbb{R}^8$ that $Ay + \lambda x = A^T x - \lambda y = 0$. Then

$$x^{T}Ay = -\lambda x^{T}x$$
$$x^{T}Ay = \lambda y^{T}y$$
$$\Longrightarrow \lambda(x^{T}x + y^{T}y) = 0 \implies \lambda = 0.$$

Then A is singular and so A = 0. Hence $\{\tau_{A,\lambda} : A \in W, \lambda \in \mathbb{R}\}$ is (isomorphic to) a 9-dimensional nonsingular subspace of $M_{16}(\mathbb{R})$.

Vector fields on spheres (Adams, 1962)

 $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$: the (n-1)-sphere. A (continuous) vector field on S^{n-1} is a (continuous) mapping $\phi : S^{n-1} \to \mathbb{R}^n$ with the property that $v \cdot \phi(v) = 0$ for all $v \in S^{n-1}$.

Vector fields $\phi_1, \phi_2, \ldots, \phi_k$ on S^{n-1} are called linearly independent if $\{\phi_1(v), \phi_2(v), \ldots, \phi_k(v)\}$ is a linearly independent subset of \mathbb{R}^n for every $v \in S^{n-1}$.

Question What is the maximum number of linearly independent continuous vector fields on S^{n-1} ?

```
Theorem (Adams, 1962)
```

```
The answer is \rho(n) - 1.
```

The connection with nonsingular spaces

Suppose that $\{A_1, \ldots, A_{\rho(n)}\}$ is a basis for a nonsingular subspace X of $M_n(\mathbb{R})$. Let X' denote the subspace spanned by $A_2, \ldots, A_{\rho(n)}$, so dim $X' = \rho(n) - 1$.

- If $A \in X'$ and $A \neq 0$, note that $A_1^{-1}A$ has no real eigenvalue.
- For $i = 2, ..., \rho(n)$, write $B_i = A_1^{-1}A_i$. Define vector fields $\phi_2, ..., \phi_{\rho(n)}$ on S^{n-1} by

 $\phi_i(v) = \operatorname{proj}_{v^{\perp}} B_i(v).$

Then these ϕ_i are linearly independent vector fields on S^{n-1} . Suppose for some $v \in S^{n-1}$ and $c_i \in \mathbb{R}$ that

 $c_2\phi_2(v)+\cdots+c_{\rho(n)}\phi_{\rho(n)}(v)=0.$

Then v is an eigenvector of $A_1^{-1}A$, where $A = (c_2A_2 + \cdots + c_{\rho(n)}A_{\rho(n)}) \in X'$, hence A = 0 and each $c_i = 0$.

The connection with nonsingular spaces

Suppose that $\{A_1, \ldots, A_{\rho(n)}\}$ is a basis for a nonsingular subspace X of $M_n(\mathbb{R})$. Let X' denote the subspace spanned by $A_2, \ldots, A_{\rho(n)}$, so dim $X' = \rho(n) - 1$.

- If A ∈ X' and A ≠ 0, note that A₁⁻¹A has no real eigenvalue.
 For i = 2,..., ρ(n), write B_i = A₁⁻¹A_i. Define vector fields φ₂,..., φ_{ρ(n)} on Sⁿ⁻¹ by φ_i(v) = proj_v B_i(v).
- Then these ϕ_i are linearly independent vector fields on S^{n-1} . Suppose for some $v \in S^{n-1}$ and $c_i \in \mathbb{R}$ that

 $c_2\phi_2(v)+\cdots+c_{\rho(n)}\phi_{\rho(n)}(v)=0.$

Then v is an eigenvector of $A_1^{-1}A$, where $A = (c_2A_2 + \cdots + c_{\rho(n)}A_{\rho(n)}) \in X'$, hence A = 0 and each $c_i = 0$.

The connection with nonsingular spaces

Suppose that $\{A_1, \ldots, A_{\rho(n)}\}$ is a basis for a nonsingular subspace X of $M_n(\mathbb{R})$. Let X' denote the subspace spanned by $A_2, \ldots, A_{\rho(n)}$, so dim $X' = \rho(n) - 1$.

If A ∈ X' and A ≠ 0, note that A₁⁻¹A has no real eigenvalue.
For i = 2,..., ρ(n), write B_i = A₁⁻¹A_i. Define vector fields φ₂,..., φ_{ρ(n)} on Sⁿ⁻¹ by

 $\phi_i(v) = \operatorname{proj}_{v^{\perp}} B_i(v).$

Then these ϕ_i are linearly independent vector fields on S^{n-1} . Suppose for some $v \in S^{n-1}$ and $c_i \in \mathbb{R}$ that

$$c_2\phi_2(v)+\cdots+c_{\rho(n)}\phi_{\rho(n)}(v)=0.$$

Then v is an eigenvector of $A_1^{-1}A$, where $A = (c_2A_2 + \cdots + c_{\rho(n)}A_{\rho(n)}) \in X'$, hence A = 0 and each $c_i = 0$.

Theorem (Meshulam 1989; Quinlan 2011; McTigue & Quinlan 2011; de Seguins Pazzis 2012; ...)

For any field \mathbb{F} , the maximum possible dimension of an affine subspace of $M_n(\mathbb{F})$ in which every element is nonsingular is $\frac{n(n-1)}{2}$.

Examples

- **1** $I_n + SUT_n(\mathbb{F})$, the set of upper triangular matrices having 1 in all diagonal positions.
- 2 If F is a formally real field (e.g. R), I_n + A_n(F), where A_n(F) = {B ∈ M_n(F) : B^T = −B} is the space of skew-symmetric matrices.

 $X^{\perp} = \{B \in M_{n \times m}(\mathbb{F}) : \operatorname{trace}(AB) = 0 \,\,\forall \,\, A \in X\}.$

Then X^{\perp} is a linear space and $\dim(X) + \dim(X^{\perp}) = mn$.

Note For a linear subspace X of $M_n(\mathbb{F})$, the affine subspace $I_n + X$ consists of nonsingular matrices if and only if no element of X possesses a non-zero eigenvalue in \mathbb{F} .

 $X^{\perp} = \{B \in M_{n \times m}(\mathbb{F}) : \operatorname{trace}(AB) = 0 \,\,\forall \,\, A \in X\}.$

Then X^{\perp} is a linear space and dim(X) + dim (X^{\perp}) = mn.

Theorem (Duality Theorem, Version 1)

Every element of the affine space $I_n + X$ is non-singular if and only if no element of X has a non-zero eigenvalue in X, if and only if every non-zero vector in \mathbb{F}^n occurs as the rowspace of some element of non-zero trace in X^{\perp} . The minimum possible dimension of X^{\perp} is $\frac{n(n+1)}{2}$.

 $X^{\perp} = \{B \in M_{n \times m}(\mathbb{F}) : \operatorname{trace}(AB) = 0 \,\,\forall \,\, A \in X\}.$

Then X^{\perp} is a linear space and dim(X) + dim (X^{\perp}) = mn.

Theorem (Duality Theorem, Version 2)

Let $C \in GL_n(\mathbb{F})$. Every element of the affine space C + X is nonsingular (or has rank n) if and only if every one-dimensional subspace of \mathbb{F}^n occurs as the rowspace of some element of $X^{\perp} \setminus X^{\perp} \cap C^{\perp}$. The minimum possible dimension of X^{\perp} is $\frac{n(n+1)}{2}$.

 $X^{\perp} = \{B \in M_{n \times m}(\mathbb{F}) : \operatorname{trace}(AB) = 0 \,\,\forall \,\, A \in X\}.$

Then X^{\perp} is a linear space and $\dim(X) + \dim(X^{\perp}) = mn$.

Theorem (Duality Theorem, Version 3)

Let $k \leq n$. Every element of the affine space $I_n + X$ has rank at least k if and only if no element of X has a non-zero eigenvalue in \mathbb{F} whose geometric multiplicity exceeds n - k; if and only if every (n - k + 1)-dimensional subspace of \mathbb{F}^n contains the rowspace of some element of X^{\perp} of non-zero trace. The minimum possible dimension of such an X^{\perp} is $\frac{k(k+1)}{2}$.

 $X^{\perp} = \{B \in M_{n \times m}(\mathbb{F}) : \operatorname{trace}(AB) = 0 \,\,\forall \,\, A \in X\}.$

Then X^{\perp} is a linear space and dim(X) + dim (X^{\perp}) = mn.

Theorem (Duality Theorem, Version 4)

Let $C \in M_n(\mathbb{F})$ and let $k \leq n$. Every element of the affine space C + X has rank at least k if and only if every (n - k + 1)-dimensional subspace of \mathbb{F}^n contains the rowspace of some element of $X^{\perp} \setminus X^{\perp} \cap C^{\perp}$. The minimum possible dimension of such an X^{\perp} is $\frac{k(k+1)}{2}$.

 $X^{\perp} = \{B \in M_{n \times m}(\mathbb{F}) : \operatorname{trace}(AB) = 0 \,\,\forall \,\, A \in X\}.$

Then X^{\perp} is a linear space and dim(X) + dim (X^{\perp}) = mn.

Theorem (Duality Theorem, Version 5)

Let X be a subspace of $M_{m \times n}(\mathbb{F})$ and let $C \in M_{m \times n}(\mathbb{F})$. Let $k \leq \min(m, n)$. Then every element of the affine space C + X has rank at least k if and only if every subspace of dimension m - k + 1 of \mathbb{F}^m contains the rowspace of some element of $X^{\perp} \setminus X^{\perp} \cap C^{\perp}$. The minimum possible dimension of such an X^{\perp} is $\frac{k(k+1)}{2}$.

And thanks to the organisers!