Special spaces of matrices

IMS Meeting 2013
 NUI Maynooth

Rachel Quinlan
rachel.quinlan@nuigalway.ie

National University of Ireland, Galway

August 27, 2013

Basic questions

■ What is the maximum possible dimension of a linear (or affine) space of (any, or symmetric, or skew-symmetric ...) matrices in $M_{n}(\mathbb{F})$ in which

- all (non-zero) elements have the same rank, or
- the ranks of (non-zero) elements all lie between specified bounds.

■ How do examples achieving these bounds arise?

Example - spaces of nonsingular matrices

Suppose that A and B are invertible matrices in $\operatorname{GL}(n, \mathbb{C})$, and that $\lambda \in \mathbb{C}$. Then

$$
\begin{aligned}
\operatorname{det}(\lambda A+B) & =\operatorname{det}(A) \operatorname{det}\left(\lambda I_{n}+A^{-1} B\right) \\
\Longrightarrow \operatorname{det}(\lambda A+B)=0 & \Longleftrightarrow \operatorname{det}\left(\lambda I_{n}+A^{-1} B\right)=0 .
\end{aligned}
$$

Since $\operatorname{det}\left(\lambda I_{n}+A^{-1} B\right)$ is a polynomial of degree n in λ, it has a root in \mathbb{C}.

Theorem

- The maximum possible dimension of a space of nonsingular matrices in $M_{n}(\mathbb{C})$ is 1 .
- If n is odd, the maximum possible dimension of a space of nonsingular matrices in $M_{n}(\mathbb{R})$ is 1 .

Smaller fields

Suppose \mathbb{F} is a field that admits a field extension \mathbb{K} of degree n, so that

$$
\operatorname{dim}_{\mathbb{F}}(\mathbb{K})=n
$$

For each $\alpha \in \mathbb{K}$, define $f_{\alpha}: \mathbb{K} \rightarrow \mathbb{K}$ by

$$
f_{\alpha}(x)=\alpha x
$$

Then f_{α} is an invertible \mathbb{F}-linear transformation of \mathbb{K}.
Let M_{α} be the matrix of this transformation with respect to some specified \mathbb{F}-basis of \mathbb{K}. Then

$$
\alpha \rightarrow M_{\alpha}
$$

is an \mathbb{F}-linear isomorphism of fields and

$$
\left\{M_{\alpha}: \alpha \in \mathbb{K}\right\}
$$

is a space of non-singular matrices of dimension n in $M_{n}(\mathbb{F})$.

On the other hand ...

If $\left\{A_{1}, \ldots, A_{k}\right\}$ are linearly independent elements of a space of nonsingular matrices in $M_{n}(\mathbb{F})$, then the first rows of these matrices must be linearly independent over \mathbb{F}. Thus the dimension of a space of nonsingular matrices in $M_{n}(\mathbb{F})$ cannot exceed n. If $X \subset M_{n}(\mathbb{F})$ is a space of invertible matrices of dimension n, then there is a isomorphism $\phi: \mathbb{F}^{n} \rightarrow X$ of \mathbb{F}-vector spaces. Defining a multiplication • on \mathbb{F}^{n} by $u \cdot v=\phi(u) v$ gives \mathbb{F}^{n} the structure of a presemifield over \mathbb{F}. Hence

Theorem

There exists an n-dimensional subspace of invertible matrices in $M_{n}(\mathbb{F})$ if and only if there exists a semifield of dimension n over \mathbb{F}.

A semifield satisfies all the axioms of a field except possibly commutativity and associativity of multinlication

Rachel Quinlan rachel.quinlan@nuigalway.ie
Special spaces of matrices

Nonsingular spaces over \mathbb{R} - the Radon-Hurwitz numbers

All semifields over \mathbb{R} have dimension 1 (real field), 2 (complex field), 4 (quaternion division algebra) or 8 (octonion semifield). For a natural number n, define $\rho(n)$ as follows.

■ 2^{u} is the highest power of 2 that divides n.

- a and b are respectively the quotient and remainder on dividing u by 4 .
- $\rho(n)=8 a+2^{b}$.

The numbers $\rho(n)$ are the Radon-Hurwitz numbers.

u	0	1	2	3	4	5	6	7	8	9	10	11
$\rho(n)$	1	2	4	8	9	10	12	16	17	18	20	24

Nonsingular spaces over \mathbb{R} - the Radon-Hurwitz numbers

All semifields over \mathbb{R} have dimension 1 (real field), 2 (complex field), 4 (quaternion division algebra) or 8 (octonion semifield).
For a natural number n, define $\rho(n)$ as follows.

- 2^{u} is the highest power of 2 that divides n.
- a and b are respectively the quotient and remainder on dividing u by 4 .
- $\rho(n)=8 a+2^{b}$.

The numbers $\rho(n)$ are the Radon-Hurwitz numbers.

Theorem (Adams,Radon,Hurwitz,...)

The maximum dimension of a nonsingular subspace of $M_{n}(\mathbb{R})$ is $\rho(n)$.

How to produce a 9-d nonsingular space in $M_{16}(\mathbb{R})$

Let W be a 8-dimensional nonsingular subspace of $M_{8}(\mathbb{R})$
(constructed from the octonion semifield). For each $A \in W$ and $\lambda \in \mathbb{R}$, define a linear transformation $\tau_{A, \lambda}: \mathbb{R}^{8} \oplus \mathbb{R}^{8} \rightarrow \mathbb{R}^{8} \oplus \mathbb{R}^{8}$ by

$$
\tau_{A, \lambda}(x, y)=\left(A y+\lambda x, A^{T} x-\lambda y\right)
$$

Then $\tau_{A, \lambda}$ is an invertible linear transformation of \mathbb{R}^{16}, for suppose for some $(x, y) \in \mathbb{R}^{8} \oplus \mathbb{R}^{8}$ that $A y+\lambda x=A^{T} x-\lambda y=0$. Then

$$
\begin{aligned}
x^{T} A y & =-\lambda x^{T} x \\
x^{T} A y & =\lambda y^{\top} y \\
\Longrightarrow \lambda\left(x^{T} x+y^{T} y\right)=0 & \Longrightarrow \lambda=0 .
\end{aligned}
$$

Then A is singular and so $A=0$. Hence $\left\{\tau_{A, \lambda}: A \in W, \lambda \in \mathbb{R}\right\}$ is (isomorphic to) a 9-dimensional nonsingular subspace of $M_{16}(\mathbb{R})$.

Vector fields on spheres (Adams, 1962)

$S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}:$ the $(n-1)$-sphere.
A (continuous) vector field on S^{n-1} is a (continuous) mapping
$\phi: S^{n-1} \rightarrow \mathbb{R}^{n}$ with the property that $v \cdot \phi(v)=0$ for all $v \in S^{n-1}$.

Vector fields $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ on S^{n-1} are called linearly independent if $\left\{\phi_{1}(v), \phi_{2}(v), \ldots, \phi_{k}(v)\right\}$ is a linearly independent subset of \mathbb{R}^{n} for every $v \in S^{n-1}$.

Question What is the maximum number of linearly independent continuous vector fields on S^{n-1} ?

Theorem (Adams, 1962)
The answer is $\rho(n)-1$.

The connection with nonsingular spaces

Suppose that $\left\{A_{1}, \ldots, A_{\rho(n)}\right\}$ is a basis for a nonsingular subspace X of $M_{n}(\mathbb{R})$. Let X^{\prime} denote the subspace spanned by $A_{2}, \ldots, A_{\rho(n)}$, so $\operatorname{dim} X^{\prime}=\rho(n)-1$.

- If $A \in X^{\prime}$ and $A \neq 0$, note that $A_{1}^{-1} A$ has no real eigenvalue.

$$
\phi_{i}(v)=\operatorname{proj}_{v \perp} B_{i}(v) .
$$

- Then these ϕ_{i} are linearly independent vector fields on S^{n-1} Suppose for some $v \in S^{n-1}$ and $c_{i} \in \mathbb{R}$ that

Then v is an eigenvector of $A_{1}^{-1} A$, where $A=\left(c_{2} A_{2}+\cdots+c_{\rho(n)} A_{\rho(n)}\right) \in X^{\prime}$, hence $A=0$ and each $c_{i}=0$.

The connection with nonsingular spaces

Suppose that $\left\{A_{1}, \ldots, A_{\rho(n)}\right\}$ is a basis for a nonsingular subspace X of $M_{n}(\mathbb{R})$. Let X^{\prime} denote the subspace spanned by $A_{2}, \ldots, A_{\rho(n)}$, so $\operatorname{dim} X^{\prime}=\rho(n)-1$.

- If $A \in X^{\prime}$ and $A \neq 0$, note that $A_{1}^{-1} A$ has no real eigenvalue.
- For $i=2, \ldots, \rho(n)$, write $B_{i}=A_{1}^{-1} A_{i}$.

Define vector fields $\phi_{2}, \ldots, \phi_{\rho(n)}$ on S^{n-1} by

$$
\phi_{i}(v)=\operatorname{proj}_{v^{\perp}} B_{i}(v)
$$

- Then these ϕ_{i} are linearly independent vector fields on S^{n-1} Suppose for some $v \in S^{n-1}$ and $c_{i} \in \mathbb{R}$ that

Then v is an eigenvector of $A_{1}^{-1} A$, where $A=\left(c_{2} A_{2}+\cdots+c_{\rho(n)} A_{\rho(n)}\right) \in X^{\prime}$, hence $A=0$ and each $c_{i}=0$.

The connection with nonsingular spaces

Suppose that $\left\{A_{1}, \ldots, A_{\rho(n)}\right\}$ is a basis for a nonsingular subspace X of $M_{n}(\mathbb{R})$. Let X^{\prime} denote the subspace spanned by $A_{2}, \ldots, A_{\rho(n)}$, so $\operatorname{dim} X^{\prime}=\rho(n)-1$.

- If $A \in X^{\prime}$ and $A \neq 0$, note that $A_{1}^{-1} A$ has no real eigenvalue.
- For $i=2, \ldots, \rho(n)$, write $B_{i}=A_{1}^{-1} A_{i}$.

Define vector fields $\phi_{2}, \ldots, \phi_{\rho(n)}$ on S^{n-1} by

$$
\phi_{i}(v)=\operatorname{proj}_{v^{\perp}} B_{i}(v)
$$

- Then these ϕ_{i} are linearly independent vector fields on S^{n-1}. Suppose for some $v \in S^{n-1}$ and $c_{i} \in \mathbb{R}$ that

$$
c_{2} \phi_{2}(v)+\cdots+c_{\rho(n)} \phi_{\rho(n)}(v)=0 .
$$

Then v is an eigenvector of $A_{1}^{-1} A$, where

$$
\begin{aligned}
& A=\left(c_{2} A_{2}+\cdots+c_{\rho(n)} A_{\rho(n)}\right) \in X^{\prime}, \text { hence } A=0 \text { and each } \\
& c_{i}=0 .
\end{aligned}
$$

The case of affine spaces

Theorem (Meshulam 1989; Quinlan 2011; McTigue \& Quinlan 2011; de Seguins Pazzis 2012; ...)

For any field \mathbb{F}, the maximum possible dimension of an affine subspace of $M_{n}(\mathbb{F})$ in which every element is nonsingular is $\frac{n(n-1)}{2}$.

Examples

$1 I_{n}+S U T_{n}(\mathbb{F})$, the set of upper triangular matrices having 1 in all diagonal positions.
2 If \mathbb{F} is a formally real field (e.g. $\mathbb{R}), I_{n}+A_{n}(\mathbb{F})$, where $A_{n}(\mathbb{F})=\left\{B \in M_{n}(\mathbb{F}): B^{T}=-B\right\}$ is the space of skew-symmetric matrices.

Some related theorems

Definiton For a linear subspace X of $M_{m \times n}(\mathbb{F})$, define X^{\perp} by

$$
X^{\perp}=\left\{B \in M_{n \times m}(\mathbb{F}): \operatorname{trace}(A B)=0 \forall A \in X\right\}
$$

Then X^{\perp} is a linear space and $\operatorname{dim}(X)+\operatorname{dim}\left(X^{\perp}\right)=m n$.
Note For a linear subspace X of $M_{n}(\mathbb{F})$, the affine subspace $I_{n}+X$ consists of nonsingular matrices if and only if no element of X possesses a non-zero eigenvalue in \mathbb{F}.

Some related theorems

Definiton For a linear subspace X of $M_{m \times n}(\mathbb{F})$, define X^{\perp} by

$$
X^{\perp}=\left\{B \in M_{n \times m}(\mathbb{F}): \operatorname{trace}(A B)=0 \forall A \in X\right\}
$$

Then X^{\perp} is a linear space and $\operatorname{dim}(X)+\operatorname{dim}\left(X^{\perp}\right)=m n$.

Theorem (Duality Theorem, Version 1)

Every element of the affine space $I_{n}+X$ is non-singular if and only if no element of X has a non-zero eigenvalue in X, if and only if every non-zero vector in \mathbb{F}^{n} occurs as the rowspace of some element of non-zero trace in X^{\perp}.
The minimum possible dimension of X^{\perp} is $\frac{n(n+1)}{2}$.

Some related theorems

Definiton For a linear subspace X of $M_{m \times n}(\mathbb{F})$, define X^{\perp} by

$$
X^{\perp}=\left\{B \in M_{n \times m}(\mathbb{F}): \operatorname{trace}(A B)=0 \forall A \in X\right\}
$$

Then X^{\perp} is a linear space and $\operatorname{dim}(X)+\operatorname{dim}\left(X^{\perp}\right)=m n$.

Theorem (Duality Theorem, Version 2)

Let $C \in \mathrm{GL}_{n}(\mathbb{F})$. Every element of the affine space $C+X$ is nonsingular (or has rank n) if and only if every one-dimensional subspace of \mathbb{F}^{n} occurs as the rowspace of some element of $X^{\perp} \backslash X^{\perp} \cap C^{\perp}$.
The minimum possible dimension of X^{\perp} is $\frac{n(n+1)}{2}$.

Some related theorems

Definiton For a linear subspace X of $M_{m \times n}(\mathbb{F})$, define X^{\perp} by

$$
X^{\perp}=\left\{B \in M_{n \times m}(\mathbb{F}): \operatorname{trace}(A B)=0 \forall A \in X\right\}
$$

Then X^{\perp} is a linear space and $\operatorname{dim}(X)+\operatorname{dim}\left(X^{\perp}\right)=m n$.

Theorem (Duality Theorem, Version 3)

Let $k \leq n$. Every element of the affine space $I_{n}+X$ has rank at least k if and only if no element of X has a non-zero eigenvalue in
\mathbb{F} whose geometric multiplicity exceeds $n-k$;
if and only if every $(n-k+1)$-dimensional subspace of \mathbb{F}^{n} contains the rowspace of some element of X^{\perp} of non-zero trace. The minimum possible dimension of such an X^{\perp} is $\frac{k(k+1)}{2}$.

Some related theorems

Definiton For a linear subspace X of $M_{m \times n}(\mathbb{F})$, define X^{\perp} by

$$
X^{\perp}=\left\{B \in M_{n \times m}(\mathbb{F}): \operatorname{trace}(A B)=0 \forall A \in X\right\}
$$

Then X^{\perp} is a linear space and $\operatorname{dim}(X)+\operatorname{dim}\left(X^{\perp}\right)=m n$.

Theorem (Duality Theorem, Version 4)

Let $C \in M_{n}(\mathbb{F})$ and let $k \leq n$. Every element of the affine space $C+X$ has rank at least k if and only if every
($n-k+1$)-dimensional subspace of \mathbb{F}^{n} contains the rowspace of some element of $X^{\perp} \backslash X^{\perp} \cap C^{\perp}$.
The minimum possible dimension of such an X^{\perp} is $\frac{k(k+1)}{2}$.

Some related theorems

Definiton For a linear subspace X of $M_{m \times n}(\mathbb{F})$, define X^{\perp} by

$$
X^{\perp}=\left\{B \in M_{n \times m}(\mathbb{F}): \operatorname{trace}(A B)=0 \forall A \in X\right\}
$$

Then X^{\perp} is a linear space and $\operatorname{dim}(X)+\operatorname{dim}\left(X^{\perp}\right)=m n$.

Theorem (Duality Theorem, Version 5)

Let X be a subspace of $M_{m \times n}(\mathbb{F})$ and let $C \in M_{m \times n}(\mathbb{F})$. Let $k \leq \min (m, n)$. Then every element of the affine space $C+X$ has rank at least k if and only if every subspace of dimension $m-k+1$ of \mathbb{F}^{m} contains the rowspace of some element of $X^{\perp} \backslash X^{\perp} \cap C^{\perp}$. The minimum possible dimension of such an X^{\perp} is $\frac{k(k+1)}{2}$.

Thank You

And thanks to the organisers!

