A partial matrix over a field \mathbb{F} is a matrix whose entries are either specified entries of \mathbb{F} or independent indeterminates. A completion of a partial matrix is a matrix obtained by assigning a value from \mathbb{F} to each indeterminate entry.
A partial matrix over a field \mathbb{F} is a matrix whose entries are either specified entries of \mathbb{F} or independent indeterminates. A completion of a partial matrix is a matrix obtained by assigning a value from \mathbb{F} to each indeterminate entry.

Problems about Rank

- Given a partial matrix, what is the range of ranks of its completions?
- Characterize (all, or extremal examples of) partial matrices whose completions satisfy specified rank bounds, e.g. have constant rank.
A partial matrix over a field \mathbb{F} is a matrix whose entries are either specified entries of \mathbb{F} or independent indeterminates. A completion of a partial matrix is a matrix obtained by assigning a value from \mathbb{F} to each indeterminate entry.

Theorem (adapted from Huang and Zhan (2011))

Let A be a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}. If $|\mathbb{F}| \geq \max(m, n)$ then A possesses a $r \times r$ sub(partial)matrix whose completions all have rank r.
The following 3×4 partial matrix over \mathbb{F}_2 has all completions of rank 3, but possesses no 3×3 submatrix of constant rank 3.

\[
\begin{pmatrix}
1 & X & 0 & 1 \\
1 & 1 & Y & 0 \\
1 & 0 & 1 & Z
\end{pmatrix}
\]

So *some* condition on the field order is necessary for the theorem to hold.
The following 3×4 partial matrix over \mathbb{F}_2 has all completions of rank 3, but possesses no 3×3 submatrix of constant rank 3.

$$
\begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
\end{pmatrix}
$$

So *some* condition on the field order is necessary for the theorem to hold.
The following 3×4 partial matrix over \mathbb{F}_2 has all completions of rank 3, but possesses no 3×3 submatrix of constant rank 3.

\[
\begin{pmatrix}
1 & X & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{pmatrix}
\]

So *some* condition on the field order is necessary for the theorem to hold.
An Example

The following 3×4 partial matrix over \mathbb{F}_2 has all completions of rank 3, but possesses no 3×3 submatrix of constant rank 3.

\[
\begin{pmatrix}
1 & 0 & 0 & 1 \\
1 & 1 & Y & 0 \\
1 & 0 & 1 & 1 \\
\end{pmatrix}
\]

So *some* condition on the field order is necessary for the theorem to hold.
An Example

The following 3×4 partial matrix over \mathbb{F}_2 has all completions of rank 3, but possesses no 3×3 submatrix of constant rank 3.

\[
\begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & Z
\end{pmatrix}
\]

So *some* condition on the field order is necessary for the theorem to hold.
Some Observations

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n?</td>
</tr>
</tbody>
</table>

- A possesses constant columns (assumed linearly independent).
- Let C be the subspace of \mathbb{F}^m spanned by the constant columns. Then $1 \leq \dim C \leq r - 2$ and every element of C^\perp includes at least one zero entry.
- If $|\mathbb{F}| \geq r$, then $\dim C \leq |\mathbb{F}| - 2$, and C includes an element with exactly one non-zero entry. An induction argument produces an $r \times r$ submatrix of A of constant rank r.

Rachel Quinlan rachel.quinlan@nuigalway.ie Partial matrices of constant rank over finite fields
Some Observations

Question

A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n?

- A possesses constant columns (assumed linearly independent).
- Let C be the subspace of \mathbb{F}^m spanned by the constant columns. Then $1 \leq \dim C \leq r - 2$ and every element of C^\perp includes at least one zero entry.
- If $|\mathbb{F}| \geq r$, then $\dim C \leq |\mathbb{F}| - 2$, and C includes an element with exactly one non-zero entry. An induction argument produces an $r \times r$ submatrix of A of constant rank r.

Rachel Quinlan rachel.quinlan@nuigalway.ie

Partial matrices of constant rank over finite fields
Some Observations

Question

A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n?

- A possesses constant columns (assumed linearly independent).
- Let C be the subspace of \mathbb{F}^m spanned by the constant columns. Then $1 \leq \dim C \leq r - 2$ and every element of C^\perp includes at least one zero entry.
- If $|\mathbb{F}| \geq r$, then $\dim C \leq |\mathbb{F}| - 2$, and C includes an element with exactly one non-zero entry. An induction argument produces an $r \times r$ submatrix of A of constant rank r.

Rachel Quinlan rachel.quinlan@nuigalway.ie

Partial matrices of constant rank over finite fields
Some Observations

Question

A is a $m \times n$ partial matrix of constant rank r over a field \mathbb{F}, with $m \leq n$. If A is exceptional (i.e. has no $r \times r$ submatrix of constant rank r), what can be said about \mathbb{F}, m and n?

- A possesses constant columns (assumed linearly independent).
- Let C be the subspace of \mathbb{F}^m spanned by the constant columns. Then $1 \leq \dim C \leq r - 2$ and every element of C^\perp includes at least one zero entry.
- If $|\mathbb{F}| \geq r$, then $\dim C \leq |\mathbb{F}| - 2$, and C includes an element with exactly one non-zero entry. An induction argument produces an $r \times r$ submatrix of A of constant rank r.

Rachel Quinlan rachel.quinlan@nuigalway.ie Partial matrices of constant rank over finite fields
Exceptional cases occur only if $|F| < r$

The following theorem can be proved by induction on r.

Theorem

There exist exceptional $m \times n$ (with $m \leq n$) partial matrices of constant rank r over \mathbb{F}_q if and only if $r > q$ and $n \geq r + q - 1$.

The base case: $r = q + 1, n \geq 2q$

An example with $q = 3 : (q + 1) \times (2q)$, exceptional of constant rank 4.

$$
\begin{pmatrix}
1 & 1 & X & 1 & 1 & 1 \\
1 & 2 & 1 & Y & 1 & 1 \\
2 & 0 & 1 & 1 & Z & 1 \\
0 & 2 & 2 & 1 & 1 & W
\end{pmatrix}
$$
The case \(r = q + 1 \): need at least \(2q \) columns

Let \(A \) be a partial \(m \times n \) matrix over \(\mathbb{F}_q \) (\(m \leq n \)) of constant rank \(q + 1 \), and let \(C \subset \mathbb{F}_q^m \) be the span of the constant columns of \(A \).

- If \(\dim C \geq q \), then \(A \) is not exceptional.
- If \(C \) contains an element with exactly one non-zero entry, then \(A \) has a \((m - 1) \times (n - 1) \) submatrix of constant rank \(q \), and \(A \) is not exceptional.
- Otherwise \(C^\perp \) has the “distributed zero property”: every element of \(C^\perp \) has at least one zero entry, but there is no position that is always zero in \(C^\perp \).
- This means \(\dim C \geq q - 1 \), so if \(A \) is exceptional, \(\dim C = q - 1 \) and \(A \) has (exactly) \(q - 1 \) constant columns.
The case $r = q + 1$: need at least $2q$ columns

Let A be a partial $m \times n$ matrix over \mathbb{F}_q ($m \leq n$) of constant rank $q + 1$, and let $C \subset \mathbb{F}_q^m$ be the span of the constant columns of A.

- If $\dim C \geq q$, then A is not exceptional.
- If C contains an element with exactly one non-zero entry, then A has a $(m - 1) \times (n - 1)$ submatrix of constant rank q, and A is not exceptional.
- Otherwise C^\perp has the “distributed zero property”: every element of C^\perp has at least one zero entry, but there is no position that is always zero in C^\perp.
- This means $\dim C \geq q - 1$, so if A is exceptional, $\dim C = q - 1$ and A has (exactly) $q - 1$ constant columns.
The case $r = q + 1$: need at least $2q$ columns

Let A be a partial $m \times n$ matrix over \mathbb{F}_q ($m \leq n$) of constant rank $q + 1$, and let $C \subset \mathbb{F}_q^m$ be the span of the constant columns of A.

- If $\dim C \geq q$, then A is not exceptional.
- If C contains an element with exactly one non-zero entry, then A has a $(m - 1) \times (n - 1)$ submatrix of constant rank q, and A is not exceptional.
- Otherwise C^\perp has the “distributed zero property”: every element of C^\perp has at least one zero entry, but there is no position that is always zero in C^\perp.
- This means $\dim C \geq q - 1$, so if A is exceptional, $\dim C = q - 1$ and A has (exactly) $q - 1$ constant columns.
The case $r = q + 1$: need at least $2q$ columns

Let A be a partial $m \times n$ matrix over \mathbb{F}_q ($m \leq n$) of constant rank $q + 1$, and let $C \subseteq \mathbb{F}_q^m$ be the span of the constant columns of A.

- If $\dim C \geq q$, then A is not exceptional.
- If C contains an element with exactly one non-zero entry, then A has a $(m - 1) \times (n - 1)$ submatrix of constant rank q, and A is not exceptional.
- Otherwise C^\perp has the “distributed zero property”: every element of C^\perp has at least one zero entry, but there is no position that is always zero in C^\perp.
- This means $\dim C \geq q - 1$, so if A is exceptional, $\dim C = q - 1$ and A has (exactly) $q - 1$ constant columns.
The case $r = q + 1$: at least $q + 1$ indeterminate columns

A is a partial $m \times n$ matrix over \mathbb{F}_q ($m \leq n$) of constant rank $q + 1$, and C^\perp has the distributed zero property.

- Form A' by assigning a value to all but one indeterminate in each indeterminate column of A.

- Given any q positions in \mathbb{F}_q^m, there is an element v of C^\perp that has non-zero entries in all of them (this is because a vector space over \mathbb{F}_q cannot be the union of q hyperplanes).

- The indeterminates of A' must collectively occupy at least $q + 1$ rows, otherwise A' would have completions of different ranks.

- So A' has at least $q + 1$ indeterminate columns, hence at least $2q$ columns in all.
The case \(r = q + 1 \): at least \(q + 1 \) indeterminate columns

\(A \) is a partial \(m \times n \) matrix over \(\mathbb{F}_q \) \((m \leq n)\) of constant rank \(q + 1 \), and \(C^\perp \) has the distributed zero property.

- Form \(A' \) by assigning a value to all but one indeterminate in each indeterminate column of \(A \).
- Given any \(q \) positions in \(\mathbb{F}_q^m \), there is an element \(v \) of \(C^\perp \) that has non-zero entries in all of them (this is because a vector space over \(\mathbb{F}_q \) cannot be the union of \(q \) hyperplanes).
- The indeterminates of \(A' \) must collectively occupy at least \(q + 1 \) rows, otherwise \(A' \) would have completions of different ranks.
- So \(A' \) has at least \(q + 1 \) indeterminate columns, hence at least \(2^q \) columns in all.
The case \(r = q + 1 \): at least \(q + 1 \) indeterminate columns

\(A \) is a partial \(m \times n \) matrix over \(\mathbb{F}_q \) \((m \leq n)\) of constant rank \(q + 1 \), and \(C^\perp \) has the distributed zero property.

- Form \(A' \) by assigning a value to all but one indeterminate in each indeterminate column of \(A \).
- Given any \(q \) positions in \(\mathbb{F}_q^m \), there is an element \(v \) of \(C^\perp \) that has non-zero entries in all of them (this is because a vector space over \(\mathbb{F}_q \) cannot be the union of \(q \) hyperplanes).
- The indeterminates of \(A' \) must collectively occupy at least \(q + 1 \) rows, otherwise \(A' \) would have completions of different ranks.
- So \(A' \) has at least \(q + 1 \) indeterminate columns, hence at least \(2q \) columns in all.
The case $r = q + 1$: at least $q + 1$ indeterminate columns

\[A \] is a partial $m \times n$ matrix over F_q ($m \leq n$) of constant rank $q + 1$, and C^\perp has the distributed zero property.

- Form A' by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in F_q^m, there is an element v of C^\perp that has non-zero entries in all of them (this is because a vector space over F_q cannot be the union of q hyperplanes).
- The indeterminates of A' must collectively occupy at least $q + 1$ rows, otherwise A' would have completions of different ranks.
- So A' has at least $q + 1$ indeterminate columns, hence at least $2q$ columns in all.
The case $r = q + 1$: at least $q + 1$ indeterminate columns

A is a partial $m \times n$ matrix over \mathbb{F}_q ($m \leq n$) of constant rank $q + 1$, and C^\perp has the distributed zero property.

- Form A' by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_q^m, there is an element v of C^\perp that has non-zero entries in all of them (this is because a vector space over \mathbb{F}_q cannot be the union of q hyperplanes).
- The indeterminates of A' must collectively occupy at least $q + 1$ rows, otherwise A' would have completions of different ranks.
- So A' has at least $q + 1$ indeterminate columns, hence at least $2q$ columns in all.
The case $r = q + 1$: at least $q + 1$ indeterminate columns

A is a partial $m \times n$ matrix over \mathbb{F}_q ($m \leq n$) of constant rank $q + 1$, and C^\perp has the distributed zero property.

- Form A' by assigning a value to all but one indeterminate in each indeterminate column of A.
- Given any q positions in \mathbb{F}_q^m, there is an element v of C^\perp that has non-zero entries in all of them (this is because a vector space over \mathbb{F}_q cannot be the union of q hyperplanes).
- The indeterminates of A' must collectively occupy at least $q + 1$ rows, otherwise A' would have completions of different ranks.
- So A' has at least $q + 1$ indeterminate columns, hence at least $2q$ columns in all.
THANK YOU!

Advertisement If you are interested in this, see the talk by James McTigue on Thursday.